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Lecture 31

Relevant sections in text: §3.7

Example: A particle in 3-d with spin 1/2

We now apply these ideas and obtain some formulas describing the angular momentum
of a particle moving in 3-d with spin 1/2. Of course this is a model of a non-relativistic
electron so it is extremely important.

To begin, we specify the Hilbert space of states. Using the tensor product construction,
we can view it as the space of linear combinations of the product basis:

|~x,±〉 ≡ |~x〉 ⊗ |Sz,±〉.

A general state is then of the form

|ψ〉 =
∫
d3x (a+(~x)|~x,+〉+ a−(~x)|~x,−〉) .

As usual, |a±(~x)|2 is the probability density for finding the particle at ~x with spin up/down
along the z axis. Note that the normalization condition is∫

d3x
(
|a+|2 + |a−|2

)
= 1.

As usual, we can characterize the state vector in terms of its components in the basis
defined above. In this case we organize the information into a 2-component column vector
whose entries are complex valued functions. This gadget is known as a spinor field:(

〈~x,+|ψ〉
〈~x,−|ψ〉

)
=
(
a+(~x)
a−(~x)

)
.

The position, momentum and spin operators are defined on the product basis as follows:

~X(|~x,±〉) = ~x|~x,±〉, ~P |~x,±〉 = (~P |~x〉)⊗ |Sz,±〉,

~S(|~x,±〉) = |~x〉 ⊗ (~S|Sz,±〉).

This implies that on the spinor fields the position and momentum operators do their usual
thing ( ~X multiplies, ~P differentiates) on each component function while the spin operators
do their usual thing via 2 × 2 matrices. For example, the orbital angular momentum is
~L = ~X × ~P and acts as

~L

(
a+(~x)
a−(~x)

)
=

(
h̄
i ~x×∇a+(~x)
h̄
i ~x×∇a−(~x)

)
,
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while the spin acts via 2× 2 matrices, e.g.,

Sx

(
a+(~x)
a−(~x)

)
=
h̄

2

(
0 1
1 0

)(
a+(~x)
a−(~x)

)
=
h̄

2

(
a−(~x)
a+(~x)

)
.

States in which the orbital and spin angular momenta are each known with certainty
are the product states

|l, s,ml,ms〉 ≡ |l,ml〉 ⊗ |ms〉,

where s = 1/2 and ms = ±1
2 . These states satisfy

L2|l, s,ml,ms〉 = l(l + 1)h̄2|l, s,ml,ms〉, Lz|l, s,ml,ms〉 = mlh̄|l, s,ml,ms〉,

Sz|l, s,ml,ms〉 = msh̄|l, s,ml,ms〉.

We can now define the total angular momentum of the system as the operator

~J = ~L+ ~S.

As usual, because ~L and ~S commute and satisfy the angular momentum commutation
relations, we have

[Ja, Jb] = ih̄εabcJc,

so the total angular momentum has all the general properties we deduced previously. For
example, ~J generates rotations of the system as a whole, while ~L only generates rotations
of position and momentum, and while ~S only generates rotations of the spin. We can only
simultaneously diagonalize L2, S2, J2 and one component, say, Jz. Setting ~J1 = ~L and
~J2 = ~S we have j1 = l = 0, 1, 2, . . . and j2 = s = 1

2 . For a state specified by |l, s = 1/2, j,m〉
we then have that the possible values for j are

j = l − 1
2
, l +

1
2
.
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