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Lecture 30

Relevant sections in text: §3.7, 6.1, 6.2, 6.3

Some remarks on identical particles

This is a good place to point out that there is yet another postulate in quantum me-
chanics which deals with identical particles. These are particles that are intrincsically alike
(same mass, spin, electric charge, etc. ). Thus, for example, all electrons are identical. This
does not mean that electrons cannot be distinguished literally, since we can clearly distin-
guish between an electron here on earth and one on the sun. But the point of view is that
these are two (identical) electrons in different (position) states. The idea is that we view
these particles as interchangeable in the sense that if, while you weren’t looking, some-
one took the electron from the sun and swapped it with the one here on Earth (putting
them in the respective states), then you couldn’t tell the difference. This intrinsic indis-
tinguishability of identical particles means the states of multi-particle systems must reflect
this symmetry under particle interchange. This particle interchange can be represented as
a unitary transformation which exchanges particles. All probability distributions must be
unchanged under this unitary transformation. This means the state vector must change
only by a phase when two identical particles are interchanged. It can be shown that it is
sufficient to consider the possibility that this phase is ±1. The new postulate of quantum
mechanics (which can more or less be derived from relativistic quantum field theory) is
that identical particles with integer spin (“bosons”) should have state vectors which do not
change under particle interchange (phase factor +1—“even” under exchange). For identi-
cal particles with half-integer spin (“fermions”) the state vectors should change sign (phase
factor −1—“odd under exchange”). This means that when considering systems of identical
particles only a vector subspace of the tensor product Hilbert space is used to characterize
states.* Moreover, this postulate implies the famous “Pauli exclusion principle” which
asserts that no two electrons may occupy the same single particle state.

Let us see how this goes in our example of two spin 1/2 systems. Assuming our spin
1/2 particles are identical, and just taking account of the spin degrees of freedom (i.e.,
ignoring translational degrees fo freedom), this means that none of the product states are
allowed! This is because they are either even under particle interchange—the | + +〉 and
| − −〉 states—or they are not invariant up to a phase—the |+−〉 and | − +〉 states. On
the other hand, you can easily see that the total spin states of two spin 1/2 systems are
invariant up to a phase. The triplet states are even under particle interchange; the singlet
state is odd under particle interchange. If the two particles are identical and no other

* In the language of tensors, the Hilbert space of state vectors for identical bosons (fermions)
is the symmetric (antisymmetric) tensor product.
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degrees of freedom are present, then one must use the anti-symmetric singlet state only.
This is the only possible state in this simple model! Note also that this state satisfies the
exclusion principle.

Of course, real particles have translational degrees of freedom and the state vector will
reflect that. As we shall discuss in detail soon, we can characterize a pair of electrons with
translational degrees of freedom using a tensor product space with basis |~x1〉⊗|~x2〉⊗|±〉⊗
|±〉. States are superpositions of these product states. Only the total state vector must
have the appropriate symmetry and this means one must consider both the position portion
of the state as well as the spin portion. Thus it is possible to have a system of two electrons
in a triplet state provided the position portion of the state vector is anti-symmetric under
particle interchange.

Angular momentum addition in general

We can generalize our previous discussion of 2 spin 1/2 systems as follows. Suppose we
are given two angular momenta ~J1 and ~J2 (e.g., two spins, or a spin and an orbital angular
momentum, or a pair of orbital angular momenta). We can discuss both angular momenta
at once using the direct product space as before, with a product basis |j1,m1j〉⊗ |j2,m2j〉.
We represent the operators on product vectors as

~J1(|α〉 ⊗ |β〉) = ( ~J |α〉)⊗ |β〉,

and
~J2(|α〉 ⊗ |β〉) = |α〉 ⊗ ( ~J |β〉),

and extend to general vectors by linearity. The product basis |j1,m1j〉 ⊗ |j2,m2j〉 is the
basis corresponding to the commuting observables provided by (J2

1 , J
2
2 , J1z, J2z)).

The total angular momentum is defined by

~J = ~J1 + ~J2.

A set of commuting observables that includes the total angular momentum is provided
by the operators (J2

1 , J
2
2 ,J

2,Jz). Note that both bases are eigenvectors of J2
1 and J2

2
since these commute with all components of the individual and total angular momentum
(exercise). We also note that product eigenvectors |j1, j2,m1j ,m2j〉 are in fact eigenvectors
of Jz with eigenvalues given by m = m1j +m2j since

Jz|j1, j2,m1j ,m2j〉 = (J1z + J2z)|j1, j2,m1j ,m2j〉 = (m1j +m2j)h̄|j1, j2,m1j ,m2j〉.

But we will have to take linear combinations of product basis vectors to get total angular
momentum vectors – eigenvectors of J2.
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The basis of total angular momentum eigenvectors are denoted |j1, j2, j,mj〉. For given
values of j1 and j2, it can be shown (see the text) that the values for j are given by

j = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j2

with (as usual)
mj = −j,−j + 1, . . . j − 1, j.

You can easily check that our results for the two spin 1/2 systems can be obtained from
these formulas.

The two sets of commuting observables defining each kind of basis are not all com-
patible. In particular, J1z and J2z do not commute with J2. So the set of total angular
momentum eigenvectors, |j1, j2, j,mj〉, will be distinct from the set of eigenvectors of the
individual angular momenta, |j1, j2,m1j ,m2j〉 (though some elements of each set may be
the same). Total angular momentum eigenvectors, |j1, j2, j,mj〉 can be expressed as linear
combinations of |j1, j2,m1,m2〉 where the superposition will go over various m1j ,m2j val-
ues. Of course one can also expand |j1, j2,m1j ,m2j〉 in terms of |j1, j2, j,mj〉 where the
superposition will be over various j,mj values. The coefficients in these superpositions are
known as the Clebsch-Gordan coefficients. We have worked out a very simple example of
all this in the case of a pair of spin 1/2 systems. There is a general theory of Clebsch-
Gordan coefficients which we shall not have time to explore. Instead we will briefly visit
another, relatively simple, and relatively important example.
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