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Lecture 26

Relevant sections in text: §3.6

Position representation of angular momentum operators

We have seen that the position operators act on position wave functions ψ(~x) by mul-
tiplication and the momentum operators act by differentiation. It is not hard to see that,
at any given point (except the origin), the angular momentum operators take derivatives
only in directions orthogonal to the position vector for that point. We have

~X · ~Lψ = ~X · ( ~X × ~P )ψ = 0.

Thus it is convenient to use spherical polar coordinates (r, θ, φ), when working with the
orbital anguler momentum. We have (good exercise!)

Lxψ(r, θ, φ) =
h̄

i

(
− sinφ∂θ − cot θ cosφ∂φ

)
ψ(r, θ, φ),

Lyψ(r, θ, φ) =
h̄

i

(
− cosφ∂θ − cot θ sinφ∂φ

)
ψ(r, θ, φ)

Lzψ(r, θ, φ) =
h̄

i
∂φψ(r, θ, φ).

You can see that Lz is particularly simple – it clearly generates “translations” in φ,
which are rotations about the z axis, of course. The other two components of ~L also
generate rotations about their respective axes. They do not take such a simple form
because spherical polar coordinates give the z axis special treatment.

Combining these results we have, in addition,

L2ψ(r, θ, φ) = −h̄2
(

1
sin2 θ

∂2
φ +

1
sin θ

∂θ(sin θ∂θ)
)
ψ(r, θ, φ).

You may recognize that this last result is, up to a factor of −h̄2r2, the angular part of the
Laplacian. This result arises from the identity (see text)

L2 = r2P 2 − ( ~X · ~P )2 + ih̄ ~X · ~P ,

where r2 = X2 + Y 2 + Z2, so that (exercise)

P 2ψ(r, θ, φ) = −h̄2∇2ψ(r, θ, φ) = −h̄2(
1

h̄2r2
L2 + ∂2

r +
2
r
∂r)ψ(r, θ, φ).

Thus we get, in operator form, the familiar decomposition of kinetic energy into a radial
part and an angular part.
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Orbital angular momentum eigenvalues and eigenfunctions; spherical harmon-
ics

A good way to see what is the physical content of the orbital angular momentum
eigenvectors is to study the position probability distributions in these states. Thus we
consider the position wave functions

ψlm = 〈~x|l,m〉

corresponding to orbital angular momentum eigenvectors. These are simultaneous eigen-
functions of L2 and Lz, so they satisfy

Lzψlml
= mlh̄ψlml

, L2ψlml
= l(l + 1)h̄2ψlml

,

where – on general grounds –

l = 0,
1
2
, 1, . . . ,

and
ml = −l,−l + 1, . . . l − 1, l.

We note that the angular momentum eigenfunctions will always involve an arbitrary
multiplicative function of the radius r. This is because the angular momentum differential
operators only take derivatives in the angular directions. What this means physically is
that the states of definite angular momentum will always have a degeneracy. This should
not surprise you: just specifying the angular momentum of a state of a particle is not
expected to completely determine the particle’s state.*

We now argue that the half-integer possibility does not occur for orbital angular mo-
mentum. First, we note that it is quite easy to find Lz eigenfunctions in spherical polar
coordinates since Lz = −ih̄∂φ. Evidently,

ψlml
= flml

(r, θ)eimlφ.

Immediately we see that ml can only be an integer – otherwise ψlm will not be a continuous
function. Now, discontinuous wave functions are not inherently evil. Indeed, there are
plenty of discontinuous functions in the Hilbert space. But these functions will fail to
be differentiable and hence will not be in the domain of the momentum and angular
momentum operators. We are trying to construct the angular momentum eigenfunctions
which, by definition, are in the domain of the operators. Thus we can conclude immediately
that, for orbital angular momentum, we can only have (at most)

l = 0, 1, 2, . . . , and ml = −l,−l + 1, . . . l − 1, l.

As we shall see, all of the indicated values do in fact arise. (By the way, in your homework
assignment you will find a problem which gives an alternative argument for this result.)

* For example, consider the classical motion of a particle with vanishing angular momentum.
The motion is such that position and momentum vectors are parallel, but are otherwise
arbitrary.
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