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Lecture 24

Relevant sections in text: §3.5

Angular momentum in general

We can deduce quite a lot about the angular momentum ~J of any system just knowing
that it is the generator of rotations, i.e., represented by 3 self-adjoint operators satisfying
the angular momentum commutation relations. To begin with, it is clear that the 3
components of ~J are not compatible so that, generally speaking, one will not be able to
determine more than one component with certainty. Indeed, the only state in which 2 or
more components of ~J are known with certainty is an eigenvector of all components with
eigenvalue zero, i.e., a state with vanishing angular momentum. To see this, suppose that
|α〉 is an eigenvector of Jx and Jy, then it is easy to see from

[Jx, Jy]|α〉 = ih̄Jz|α〉,

that |α〉 is an eigenvector of Jz with eigenvalue 0. Now consider

[Jz, Jx]|α〉 = ih̄Jy|α〉.

You can easily see that the left hand side vanishes hence |α〉 is an eigenvector of Jy with
eigenvalue zero. Similarly you can show (exercise) that Jx|α〉 = 0 also. Thus, if there is
any angular momentum in the system at all, at most one component can be known with
certainty in any state. When we consider states with a definite value for a component of ~J ,
we usually call that component Jz, by convention. But it is important to realize that there
is nothing special about the z-direction; one can find eigenvectors for any one component
of ~J (cf. spin 1/2).

We next observe that the (squared) magnitude of the angular momentum,

J2 = J2
x + J2

y + J2
z

is a Hermitian operator (we will assume that J2 is self-adjoint) that is compatible with
any component Ji. To see this is a very simple computation:

[J2, Jk] =
∑
l

(Jl[Jl, Jk] + [Jl, Jk]Jl) = ih̄
∑
l,m

εlkm(JlJm + JmJl) = 0,

where the last equality follows from the antisymmetry of εlkm.* Consequently, there exists
an orthonormal basis of simultaneous eigenvectors of J2 and any one component of ~J

* The quantity in parenthesis is symmetric under l↔ m while εlkm is anti-symmetric when
this interchange is performed. This guarantees that each term in the double sum will be
canceled by another term in the double sum.
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(usually denoted Jz). Physically, this means that while the 3 components of angular
momentum are not compatible, there exists a complete set of states in which the magnitude
of angular momentum and one component of angular momentum are known with certainty.
As a simple example, consider the spin 1/2 case, where

S2 =
3
4
h̄2I,

which obviously commutes with each of the spin operators. Clearly any basis of eigenvec-
tors of any of the Si will also be eigenvectors of S2.

Angular momentum eigenvalues and eigenvectors

Of course, given an observable represented as an operator, the most pressing business
is to understand the spectral properties of the operator since its spectrum determines the
possible outcomes of a measurement of the observable and the (generalized) eigenvectors
are used to compute the probability distribution of the observable in a given state. In our
case we have defined angular momentum as operators satisfying

~J = ~J †, [Jl, Jm] = ih̄εlmnJn.

Just from these relations alone there is a lot we can learn about the spectral properties of
angular momentum.

We assume that each of the operators Ji and J2 admit eigenvectors. Let us study the
angular momentum eigenvalues and eigenvectors, the latter being simultaneous eigenvec-
tors of Jz and J2. We write

J2|a, b〉 = a|a, b〉, Jz|a, b〉 = b|a, b〉,

The possible values of a and b can be deduced much in the same way as the spectrum of
the Hamiltonian for an oscillator can be deduced using the raising and lowering operators.
To this end we define the angular momentum ladder operators

J± = Jx ± iJy, J
†
± = J∓.

Of course, these two operators contain the same physical information as Jx and Jy. In terms
of the ladder operators, the angular momentum commutation relations can be expressed
as (exercise)

[Jz, J±] = ±h̄J±, [J±, J2] = 0, [J±, J∓] = ±2h̄Jz.

From these relations we can see that the vector J±|a, b〉 satisfies (exercise)

J2(J±|a, b〉) = a(J±|a, b〉), Jz(J±|a, b〉) = (b± h̄)(J±|a, b〉).
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Thus, when acting on angular momentum eigenvectors (eigenvectors of J2 and Jz), the
ladder operators preserve the magnitude of the angular momentum but increase/decrease
the z component by a “quantum of angular momentum” h̄.

Next we show that the eigenvalues of J2 are non-negative and bound the magnitude
of the eigenvalues of Jz. One way to see this arises by studying the relation

J2 − J2
z =

1
2

(J+J− + J−J+) =
1
2

(J†−J− + J
†
+J+).

Now, for any operator A and vector |ψ〉 we have that (exercise)

〈ψ|A†A|ψ〉 ≥ 0,

so that for any vector |ψ〉 (in the domain of the squared angular momentum operators)
(exercise)

〈ψ|J2 − J2
z |ψ〉 ≥ 0.

Assuming the eigenvectors |a, b〉 are not of the “generalized” type, i.e., are normalizable,
we have

0 ≤ 〈a, b|J2 − J2
z |a, b〉 = a− b2,

and hence
a ≥ 0, −

√
a ≤ b ≤

√
a.

The ladder operators increase/decrease the b value of the eigenvector with out changing
a. Thus by repeated application of these operators we can violate the inequality above
unless there is a maximum and minimum value for b such that application of J+ and J−,
respectively, will result in the zero vector. Moreover, if we start with an eigenvector with
a minimum (maximum) value for b, then by successively applying J+ (J−) we must hit
the maximum (minimum) value. As shown in your text, these requirements lead to the
following results. The eigenvalues a can only be of the form

a = j(j + 1)h̄2,

where j ≥ 0 can be a non-negative integer or a half integer only:

j = 0, 1/2, 1, 3/2, . . . .

For an eigenvector with a given value of j, the eigenvalues b are given by

b = mj h̄,

where
mj = −j,−j + 1, . . . , j − 1, j.
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Note that if j is an integer then so is mj , and if j is a half-integer, then so is mj . Note also
that for a fixed value of j there are 2j + 1 possible values for mj . The usual notational
convention is to denote angular momentum eigenvectors by |j,mj〉, with j and mj obeying
the restrictions described above.

The preceding arguments show how the self-adjointness and commutation relations of
angular momentum give plenty of information about the spectra. We note that these are
necessary conditions, e.g., the magnitude of angular momentum must be determined via
an integer or half-integer, but this does not mean that all these possibilities will occur. As
we shall see, for orbital angular momentum only the integer possibility is utilized. For the
spin 1/2 system, a single value j = 1/2 is utilized. We will discuss this in a little more
detail next.
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