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Lecture 20

Relevant sections in text: §2.6

More on the mechanical momentum

Here is an interesting observation: while the components of the canonical momenta
are compatible,

[Pi, Pj ] = 0,

the mechanical momenta are not when there is a magnetic field:

[Πi,Πj ] = ih̄
q

c
(
∂Ai
∂xj
−
∂Aj

∂xi
) = ih̄

q

c
εijkB

k.

Thus, in the presence of a magnetic field, the mechanical momenta obey an uncertainty
relation! This is a surprising, non-trivial and quite robust prediction of quantum mechan-
ics. In particular, if the field is uniform, then two components of mechanical momentum
will obey a state independent uncertainty relation rather like ordinary position and mo-
mentum. Can this prediction be verified? As you will see in your homework problems, this
incompatibility of the mechanical momentum components in the presence of a magnetic
field is responsible for the “Landau levels” for the energy of a charged particle in a uniform
magnetic field. These levels are well-known in condensed matter physics.

Heisenberg equations for a charged particle in an electromagnetic field

The remaining set of Heisenberg equations are most simply expressed using the me-
chanical momentum. Starting with

H =
Π2

2m
+ qφ( ~X),

using the commutation relations between components of the mechanical momentum (above),
and using

[Xi,Πj ] = ih̄δijI,

we have (exercise)

d

dt
~Π(t) =

1
ih̄

[~Π(t), H] = q

{
~E( ~X(t)) +

1
2mc

(
~Π(t)× ~B( ~X(t))− ~B( ~X(t))× ~Π(t)

)}
.

Except for the possible non-commutativity of ~Π and ~B, this is the usual Lorentz force law
for the operator observables.
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The Schrödinger equation

Dynamics in the Schrödinger picture is controlled by the Schrödinger equation. If we
compute it for position wave functions then we get (exercise)

1
2m

(
h̄

i
∇− q

c
~A(~x)

)2
ψ(~x, t) + qφ(~x, t)ψ(~x, t) = ih̄

∂

∂t
ψ(~x, t).

The left hand side represents the action of the Hamiltonian as a linear operator on position
wave functions. We have in detail

Hψ = − h̄
2

2m
∇2ψ − qh̄

imc

[
~A · ∇ψ +

1
2

(∇ · ~A)ψ
]

+ [
(q
c

)2
A2 + qφ]ψ.

As you may know, one can always arrange (by making a gauge transformation if
necessary) to use a vector potential that satisfies the “Coulomb gauge”:

∇ · ~A = 0.

In this case the Hamiltonian on position wave functions takes the form

Hψ = − h̄
2

2m
∇2ψ − qh̄

imc
~A · ∇ψ + [

(q
c

)2
A2 + qφ]ψ.

Gauge transformations

There is a subtle issue lurking behind the scenes of our model of a charged particle in
a prescribed EM field. It has to do with the explicit appearance of the potentials in the
operators representing various observables. For example, the Hamiltonian – which should
represent the energy of the particle – depends quite strongly on the form of the potentials.
The issue is that there is a lot of mathematical ambiguity in the form of the potentials
and hence operators like the Hamiltonian are not uniquely defined. Let me spell out the
source of this ambiguity.

You may recall from your studies of electrodynamics that, if (φ, ~A) define a given EM
field ( ~E, ~B), then the potentials (φ′, ~A′), given by

φ′ = φ− 1
c

∂f

∂t
, ~A′ = ~A+∇f,

define the same ( ~E, ~B) for any choice of f = f(t, ~x). Because all the physics in classical
electrodynamics is determined by ~E and ~B, we declare that all potentials related by such
gauge transformations are physically equivalent in the classical setting. In the quantum
setting, we must likewise insist that this gauge ambiguity of the potentials does not affect
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physically measurable quantities. Both the Hamiltonian and the mechanical momentum
are represented by operators which change their mathematical form when gauge-equivalent
potentials are used. The issue is how to guarantee the physical predictions are nonetheless
gauge invariant.

Let us focus on the Hamiltonian for the moment. The eigenvalues of H define the
allowed energies; the expansion of a state vector in the eigenvectors of H defines the
probability distribution for energy; and the Hamiltonian defines the time evolution of the
system. The question arises whether or not these physical aspects of the Hamiltonian
operator are in fact influenced by a gauge transformation of the potentials. If so, this
would be a Very Bad Thing. Fortunately, as we shall now show our model for a particle in
an EM field can be completed so that the physical output of quantum mechanics (spectra,
probabilities) are unaffected by gauge transformations.

For simplicity (only) we still assume that H is time-independent and we only consider
gauge transformations for which ∂f

∂t = 0. The key observation is the following. Consider
two charged particle Hamiltonians H and H ′ differing only by a gauge transformation of
the potentials, so that they should be physically equivalent. Our notation is that if H is
defined by (φ, ~A) then H ′ is defined by the gauge transformed potentials

φ′ = φ, ~A′ = ~A+∇f(~x),

It is now straightforward to verify (see below) that if |E〉 satisfies

H|E〉 = E|E〉,

then
|E〉′ = e

iq
h̄cf( ~X)|E〉

satisfies
H ′|E〉′ = E|E〉′.

Note that the eigenvalue is the same in each case. The operator e
iq
h̄cf( ~X) is unitary, and

this implies the spectra of H and H ′ are identical. Thus one can say that the spectrum of
the Hamiltonian is unaffected by a gauge transformation, that is, the spectrum is gauge in-
variant. Thus one can use whatever potentials one wishes to compute the energy spectrum
and the prediction is always the same.

Our proof that the spectrum of the Hamiltonian does not change when the potentials
are redefined by a gauge transformation also indicates how we are to use our model so that
all probabilities are unaffected by gauge transformations. We decree that if |ψ〉 is the state
vector of a particle in an EM field described by the potentials (φ, ~A), then

|ψ〉′ = e
iq
h̄cf( ~X)|ψ〉
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is the state vector of the particle when using the gauge transformed potentials (φ′, ~A′).
Note that this is a unitary transformation.

Let us now see why this prescription works. For a particle, all observables are functions
of the position and momentum operators. Here “momentum” means either canonical or
mechanical. The position observable is represented (in the Schrödinger picture) by the
usual operator ~X, no matter the gauge. Any observable function G of the position has an
expectation value which does not change under a gauge transformation:

′〈ψ|G( ~X)|ψ〉′ = 〈ψ|e−
iq
h̄cf( ~X)G( ~X)e

iq
h̄cf( ~X)|ψ〉 = 〈ψ|G( ~X)|ψ〉.

The momentum operator is where things get more interesting. The mechanical momentum
is a gauge-invariant observable. But it is represented by an operator which changes under
a gauge transformation! Indeed, we have

~Π = ~p− q

c
~A, ~Π′ = ~p− q

c
( ~A+∇f).

However, it is straightforward to check that (exercise)

~Π′e
iq
h̄cf( ~X)|ψ〉 = e

iq
h̄cf( ~X)~Π|ψ〉.

Put differently, we have the operator representing the mechanical momentum – which is
a gauge-invariant observable – transforming under a gauge transformation as a unitary
transformation:

~Π′ = e
iq
h̄cf( ~X)~Πe−

iq
h̄cf( ~X).

Any function of the position and (mechanical) momentum will have a similar transforma-
tion law. In particular, the Hamiltonian can be expressed as (exercise)

H =
1

2m
Π2 + qφ,

so it follows that (exercise)

H ′e
iq
h̄cf( ~X)|ψ〉 = e

iq
h̄cf( ~X)H|ψ〉,

that is,
H ′ = e

iq
h̄cf( ~X)He−

iq
h̄cf( ~X).

The physical output of quantum mechanics is not changed by a unitary transformation
of the state vectors and a unitary (similarity transformation) of the observables. This is
because the expectation values will not change in this case:

〈ψ|C|ψ〉 = 〈ψ′|C ′|ψ′〉,
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where
|ψ′〉 = U |ψ〉, C ′ = UCU†.

It is now easy to see that if you compute the expectation value of (any function of the)
mechanical momentum you can use the state |ψ〉 and operator ~Π, or you can use the vector
|ψ〉′ and operator ~Π′, and get the same answer. In this way one says that the physical
output of quantum mechanics is suitably gauge invariant. Different choices of potentials
lead to unitarily equivalent mathematical representations of the same physics.

It is not hard to generalize all this to time dependent gauge transformationsf = f(t, ~x).
Here we simply observe that if |ψ, t〉 is a solution to the Schrödinger equation for one set
of potentials then (exercise)

|ψ, t〉′ = e
iq
h̄cf(t, ~X)|ψ, t〉

is the solution for potentials obtained by a gauge transformation defined by f . Thus
one gets gauge invariant results for the probability distributions as functions of time.
This result also shows that position wave function solutions to the Schrödinger equation
transform as

ψ(~x, t)→ e
iq
h̄cf(t,~x)ψ(~x, t)

under a gauge transformation.

Aharonov-Bohm effect

The Aharonov-Bohm effect involves the effect of a magnetic field on the behavior of
a particle even when the particle has vanishing probability for being found where the
magnetic field is non-vanishing. Of course, classically the Lorentz force law would never
lead to such behavior. Nevertheless, the AB effect has been seen experimentally. You will
explore one version of this effect in a homework problem. Here let me just show you how,
technically, such a result can occur.

The key to the AB effect is to cook up a physical situation where the magnetic field is
non-vanishing in a region (from which the charged particle will be excluded) and vanishing
in a non-simply connected region where the particle is allowed to be. Since the magnetic
field vanishes in that region we have that

∇× ~A = 0.

In a simply connected, “contractible” region of space such vector fields must be the gradient
of a function. In this case the potential can be gauge transformed to zero, and there will
be no physically observable influence of the magnetic field in this region. However, if the
region is not simply connected it need not be true that ~A is a gradient, i.e., “pure gauge”.
As an example (relevant to your homework), we study the following scenario.
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Consider a cylindrical region with uniform magnetic field (magnitude B) along the axis
of the cylinder. You an imagine this being set up via an (idealized) solenoid. Outside of
the cylinder the magnetic field vanishes, but the vector potential outside the cylinder must
be non-trivial. In particular ~A cannot be the gradient of a function everyhwere outside the
cylinder. To see this, we have from Stokes theorem:∫

C

~A · d~l =
∫
S

~B · d~s,

where C is a closed contour enclosing the cylinder and S is a surface with boundary C,
so that the right-hand side is never zero if the flux of ~B through S is non-zero (which it
isn’t in our example). But if ~A is a gradient then the left-hand side vanishes (exercise) –
contradiction. In fact, the vector potential can be taken to be (exercise)

~A =
BR2

2r
êθ, r > R

where R is the radius of the cylinder, r > R is the cylindrical radial coordinate and êθ
is a unit vector in the direction of increasing cylindrical angle. Since ~A is necessarily not
(gauge-equivalent to) zero, it can affect the energy spectrum – and it does.
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