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Lecture 18

Relevant sections in text: §2.3

Oscillator energy eigenfunctions

We have defined the simple harmonic oscillator and computed the spectrum of its
Hamiltonian. Now we explore some properties of the energy eigenvectors, that is, the
stationary states. Of course, each of these vectors |n〉 represents a state in which the
energy is known with certainty to have the value En = (n + 1

2)h̄ω. These states also
define probability distributions for all other observables, in particular the position and
momentum. Let us consider the position probability distribution, which is controlled by
the position wave functions

un(x) = 〈x|n〉.

It is easy enough to compute these functions. For example, consider the ground state wave
function u0; it satisfies

au0(x) = 〈x|a|0〉 = 0.

Since

aun(x) =
√
mω

2h̄

(
X +

i

mω
P

)
un(x) =

√
mω

2h̄

(
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h̄

mω

d
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)
un(x),

we have that (
x+

h̄

mω

d

dx

)
u0(x) = 0.

This equation is easily solved and normalized to give a Gaussian (exercise)

u0(x) =
1

π1/4√x0
e
− 1

2

(
x
x0

)2

,

where

x0 =

√
h̄

mω

is a length scale set by the problem and, as you can see, it determines the width of the
Gaussian.

Here we can see one way in which the quantum and classical mechanics regimes are
related. Of course, a classical mechanics description of an oscillator implies that in the
ground state the oscillator has position x = 0 with certainty. Quantum mechanics provides
instead a Gaussian probability distribution about x = 0. However, provided that x0 is
“small”, the width of the Gaussian is negligible and the quantum description starts to
coalesce with the classical description in this regard. I used quotation marks about the
word “small” since x0 has dimensions of length; whether or not you consider it to be small
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depends on comparing it to some other length scale. When we speak of “macroscopic
phenomena” we usually are interested in length scales on the order of, say, centimeters,
masses on the order of grams, and times on the order of seconds. In such a regime x0 is
indeed very, very small. But, of course, in a “microscopic” regime, x0 can be appreciable.

The “excited states” (n > 0) are easily obtained from the identity (exercise)

|n〉 =
1√
n!

(a†)n|0〉,

so that

un(x) =

 1

π1/4
√

2nn!xn+1/2
0

(−x2
0
d

dx
+ x

)n
e
− 1

2

(
x
x0

)2

.

As you may know, this formula represents (up to the dimensionful constants) one of the
standard “generating function” methods for defining the Hermite polynomials. Thus,
un(x) is a Hermite polynomial times the ground state Gaussian. See your text for detailed
formulas.

Expectation values

It is instructive to see how to compute stationary state expectation values and, of
course, to see what they look like. To begin, we observe that stationary state expectation
values of observables that are linear in position and/or momentum will vanish:

〈n|X|n〉 = 0 = 〈n|P |n〉.

To see this, just note that such observables are linear in the ladder operators and we have
(by orthogonality)

〈n|a|n〉 ∝ 〈n|n− 1〉 = 0, 〈n|a†|n〉 ∝ 〈n|n+ 1〉 = 0.

Another way to see that the expectation values of position and momentum vanish in
stationary states is to note that (exercise)

X ∝ [P,H], P ∝ [X,H].

From which the result easily follows (exercise).

On the other hand, quadratic functions of position and momentum need not have
vanishing expectation values. For example, in the ground state (exercise)

〈0|X2|0〉 =
x2

0
2
〈0|(a†2 + a2 + a†a+ aa†)|0〉 =

x2
0

2
.
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Which gibes with our earlier comment about the width of the ground state Gaussian
position probability distribution. A similar computation for 〈P 2〉 shows that (exercise)

〈0|P 2|0〉 =
h̄2

2x2
0
.

We see that the dispersions in position and momentum satisfy (in the ground state)

〈∆X2〉〈∆P 2〉 =
h̄2

4
,

which is in accord with the uncertainty principle, but also shows that the ground state is
a “minimum uncertainty state”. The excited states are not minimum uncertainty states;
a straightforward computation reveals (exercise)

〈∆X2〉〈∆P 2〉 = (n+
1
2

)2h̄2.

Stationary states and classical mechanics

Here we use the oscillator to illustrate a very key point about the relation between
classical and quantum mechanics.

The stationary states we just studied do not provide any explicitly dynamical behavior.
This is not a specific feature of the oscillator, but a general feature of stationary states in
quantum mechanics. This is, at first sight, a little weird compared to classical mechanics.
Think about it: the probability distributions for position and momentum are time inde-
pendent in any state of definite energy. In classical mechanics the position and momentum
(and the energy) can, at each moment of time, be determined with certainty; the values
for the position and momentum oscillate in time in every state but the ground state.*
In light of the incompatibility of the position, momentum and energy observables in the
quantum description, one cannot directly compare the classical and quantum predictions
in the excited states. The quantum predictions are purely statistical, involving repeated
state preparations – states specified only by their energy – and measurements of various
observables. If we want to compare the quantum and classical descriptions we need to ask
the right questions of classical mechanics — this means statistical questions. Let us pause
for a moment to expand on this.

* In the ground state, the classical motion is of course trivial — the position (relative to
the equilibrium position) and the momentum vanish. In the quantum ground state the
position and momentum have Gaussian probability distributions centered at the vanishing
values. For macroscopic values of m and ω the widths of these distributions are negligible.
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In classical mechanics every solution of the equations of motion is a state of definite
energy (assuming energy is conserved). Fix an energy E. Let us ask the same question
that we ask in quantum theory: Given the energy what is the probability for finding
the particle at various locations? To answer this question we define the probability for
finding the classical particle to be in the interval [x, x+ dx] to be proportional to the time
spent in that region. (The proportionality constant is used to normalize the probability
distribution.) For a classical oscillator at the point x, a displacement dx takes place in the
time dt where (exercise)

dt =
dx√

2E
m − ω2x2

.

Here it is understood that x lies between the two classical turning points, where

E =
1
2
mω2x2.

Up to a constant normalization factor, this defines the probability density P (x) for the
classical oscillator:

P (x) = (const.)
1√

2E
m − ω2x2

.

(The probability density vanishes outside the turning points.) For E 6= 0, the resulting
probability density is strongly peaked near the classical turning points of the motion and
relatively small and flat near the equilibrium position. This just reflects the fact that,
because the oscillator moves slowly near the turning points and rapidly at the equilibrium
position, it is more likely to find the particle near the turning points. In general, a quantum
oscillator does not have anything like this classical probability distribution. First of all, it
oscillates in a non-trivial way because of the Hermite polynomials. Furthermore, while the
probability density is exponentially damped outside of the turning points, the probability
distribution is not identically zero there. However, it can be shown that the quantum
probability distribution does approximate the classical distribution in the limit of “large
energy”. Here, “large” means sufficiently “macroscopic”, i.e., En >> h̄ω so that n >> 1.
To see this one simply computes |un|2 for a large n. The result is a very rapidly oscillating
wavefunction; the oscillations occur about an average curve which approaches the classical
probability distribution as n gets larger and larger. For any finite interval of x, a large
enough n will result in a probability for finding the particle in that interval to agree with
the classical prediction to any desired accuracy. To see this quickly, simply ask your favorite
computer math software to plot the graphs!

We have seen that the probability distribution for position predicted by quantum
mechanics approaches that predicted by classical statistical mechanics in the limit of “large
quantum numbers”. This result is satisfying, but is far from the complete story of the
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relation of the classical and quantum features of the oscillator. A much better way to model
the classical oscillator does not use stationary states but instead minimum uncertainty
“coherent states” (see the exercises at the end of chapter 2). Recall that the excited
states are not minimum uncertainty states in position and momentum. The coherent
states are minimum uncertainty states; for macroscopic mass and frequency the oscillator
has a small enough uncertainty in energy, position and momentum and a suitable time
dependence to model a classical oscillator. In particular, because the coherent states
aren’t stationary (except for the ground state), the position and momentum probability
distributions can mimic their classical counterparts – sinusoidal oscillations. We will not
explore the coherent states here. We do note that the ground state of the oscillator is one
such state. For macroscopic values of m and ω the width of the ground state Gaussian
position probability distribution – controlled by x0 = h̄

mω is truly negligible compared to
macroscopic length scales, so you can see at least in this state that classical behavior is
recovered.
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