Lecture 10
Relevant sections in text: §1.7

Relation between position and momentum wave functions

A very useful and important relationship exists between the position and momentum (generalized) eigenvectors. To get at it, we study the scalar product $\langle x \mid p\rangle$, which can be viewed as the position wave function representing a momentum eigenvector. (Similarly, $\langle p \mid x\rangle=\langle x \mid p\rangle^{*}$ can also be viewed as the the momentum wave function representing a position eigenvector.) This complex function of x must satisfy (for each p)

$$
\langle x-\epsilon \mid p\rangle=\langle x| T_{\epsilon}|p\rangle=e^{-\frac{i}{\hbar} \epsilon p}\langle x \mid p\rangle .
$$

This implies (to first order in ϵ) (exercise)

$$
\frac{d}{d x}\langle x \mid p\rangle=\frac{i}{\hbar} p\langle x \mid p\rangle .
$$

The solution to this equation is

$$
\langle x \mid p\rangle=(\text { const. }) e^{\frac{i}{\hbar} p x}
$$

The constant can be determined by the normalization condition:

$$
\delta\left(p, p^{\prime}\right)=\left\langle p \mid p^{\prime}\right\rangle=\int_{-\infty}^{\infty} d x\langle p \mid x\rangle\left\langle x \mid p^{\prime}\right\rangle
$$

Using the Fourier representation of the delta function,

$$
\delta\left(p, p^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x e^{i x\left(p^{\prime}-p\right)}
$$

we see that (exercise)

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x}
$$

Thus we have recovered a familiar result from wave mechanics: the position space wave function for a particle in a (idealized) state such that the momentum has the value p is a (complex) plane wave* with wavelength $\frac{2 \pi \hbar}{p}$. Because the absolute value of the wave function is unity, the particle has an equal probability of being found anywhere (think: uncertainty relation). Note also that since the energy of a free particle of mass m is

$$
H=\frac{P^{2}}{2 m}
$$

* Of course, plane waves are not normalizable, but we have already discussed this subtlety.
this wave function describes a free particle with energy $p^{2} / 2 m$.
Because

$$
\langle p \mid x\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{-\frac{i}{\hbar} p x}
$$

we see that the momentum space probability amplitude for a particle in an idealized state corrsponding to the particle having a definite spatial location is also a plane wave. We see that for an arbitrarily well-localized particle, all momenta are equally likely (uncertainty relation again).

With these results in hand we can give an explicit relation between the position and momentum bases:

$$
|x\rangle=\int_{-\infty}^{\infty} d p|p\rangle\langle p \mid x\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d p e^{-\frac{i}{\hbar} p x}|p\rangle,
$$

and

$$
|p\rangle=\int_{-\infty}^{\infty} d x|x\rangle\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{\frac{i}{\hbar} p x}|x\rangle
$$

If we set

$$
\psi(x)=\langle x \mid \psi\rangle, \quad \tilde{\psi}(p)=\langle p \mid \psi\rangle
$$

we get (exercise)

$$
\psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d p e^{\frac{i}{\hbar} p x} \tilde{\psi}(p)
$$

and

$$
\tilde{\psi}(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-\frac{i}{\hbar} p x} \psi(x)
$$

Thus we recover the standard result that the position wave functions and momentum wave functions are related by Fourier transforms. Note also that (exercise)

$$
\langle\psi \mid \phi\rangle=\int_{-\infty}^{\infty} d x \psi^{*}(x) \phi(x)=\int_{-\infty}^{\infty} d p \tilde{\psi}^{*}(p) \tilde{\phi}(p)
$$

When representing states by position (momentum) wave functions we say we are using the position (momentum) representation for the quantum system. In the momentum representation the momentum operator is a "multiplication operator":

$$
P \tilde{\psi}(p)=\langle p| P|\psi\rangle=p\langle p \mid \psi\rangle=p \tilde{\psi}(p),
$$

while the position operator is a "differentiation operator":

$$
\begin{aligned}
X \tilde{\psi}(p) & =X\left\{\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-\frac{i}{\hbar} p x} \psi(x)\right\} \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-\frac{i}{\hbar} p x} x \psi(x) \\
& =-\frac{\hbar}{i} \frac{\partial}{\partial p} \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-\frac{i}{\hbar} p x} \psi(x) \\
& =-\frac{\hbar}{i} \frac{\partial \tilde{\psi}(p)}{\partial p}
\end{aligned}
$$

Expectation values

Expectation values in the position and momentum representation are easy to compute. Using the notation

$$
\psi(x)=\langle x \mid \psi\rangle, \quad \tilde{\psi}(p)=\langle p \mid \psi\rangle,
$$

we have, in particular, the following

$$
\langle\psi| f(X)|\psi\rangle=\int_{-\infty}^{\infty} d x f(x)|\psi(x)|^{2}=\int_{-\infty}^{\infty} d p \tilde{\psi}^{*}(p) f\left(-\frac{\hbar}{i} \frac{d}{d p}\right) \tilde{\psi}(p)
$$

and

$$
\langle\psi| f(P)|\psi\rangle=\int_{-\infty}^{\infty} d p f(p)|\tilde{\psi}(p)|^{2}=\int_{-\infty}^{\infty} d x \psi^{*}(x) f\left(\frac{\hbar}{i} \frac{d}{d x}\right) \psi(x)
$$

You should prove these as a very good exercise.

Particle in 3 dimensions

The generalization to a particle in 3 dimensions is done by, essentially, tripling our previous constructions. Here we briefly describe this generalization.

Our strategy is to take account of the fact that we can measure positions in 3-d, and we can measure momenta in 3 -d. Thus we now have position vectors \mathbf{X} corresponding to 3 compatible observables: $X^{i}=(X, Y, Z)$, and momentum vectors \mathbf{P} corresponding to 3 compatible observables: $P_{i}=\left(P_{x}, P_{y}, P_{z}\right)$. Each pair $\left(X^{i}, P_{i}\right)$ is represented by selfadjoint operators exactly as before. The operator P_{i} is to generate translations in the corresponding position variable X^{i}. We therefore demand that they have the following canonical commutation relations:

$$
\left[X^{i}, X^{j}\right]=\left[P_{i}, P_{j}\right]=0, \quad\left[X^{i}, P_{j}\right]=i \hbar \delta_{j}^{i} I .
$$

We have position (generalized) eigenvectors $|\mathbf{x}\rangle$ and momentum (generalized) eigenvectors $|\mathbf{p}\rangle$,

$$
X^{i}|\mathbf{x}\rangle=x^{i}|\mathbf{x}\rangle, \quad P_{i}|\mathbf{p}\rangle=p_{i}|\mathbf{p}\rangle .
$$

These form a (generalized) basis:

$$
\int d^{3} x|\mathbf{x}\rangle\langle\mathbf{x}|=I=\int d^{3} p|\mathbf{p}\rangle\langle\mathbf{p}| .
$$

Here it is understood that the integrals run over all of position/momentum space.
The self-adjoint momentum operators generate unitary transformations corresponding to 3 -d translations:

$$
T_{\mathbf{a}}=e^{-\frac{i}{\hbar} \mathbf{a} \cdot \mathbf{P}}, \quad T_{\mathbf{a}}|\mathbf{x}\rangle=|\mathbf{x}+\mathbf{a}\rangle
$$

The canonical commutation relations reflect the fact that translations are commutative operations:

$$
T_{\mathbf{a}} T_{\mathbf{b}}=T_{\mathbf{b}} T_{\mathbf{a}}=e^{-\frac{i}{\hbar}(\mathbf{a}+\mathbf{b}) \cdot \mathbf{P}}=T_{\mathbf{a}+\mathbf{b}}
$$

Note that the commutation relations allow us to choose a basis of simultaneous (generalized) eigenvectors of the position or momentum. The relation between the two bases is

$$
\langle\mathbf{x} \mid \mathbf{p}\rangle=\frac{1}{(2 \pi \hbar)^{3 / 2}} e^{\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{x}}
$$

The position wave functions and momentum wave functions are defined as usual by taking the components of a state vector along the corresponding basis:

$$
\psi(\mathbf{x})=\langle\mathbf{x} \mid \psi\rangle, \quad \tilde{\psi}(\mathbf{p})=\langle\mathbf{p} \mid \psi\rangle
$$

We then have

$$
X^{i} \psi(\mathbf{x})=x^{i} \psi(\mathbf{x}), \quad P_{i} \psi(\mathbf{x})=\frac{\hbar}{i} \frac{\partial}{\partial x^{i}} \psi(\mathbf{x})
$$

and

$$
X^{i} \tilde{\psi}(\mathbf{p})=-\frac{\hbar}{i} \frac{\partial}{\partial p_{i}} \tilde{\psi}(\mathbf{p}), \quad P_{i} \tilde{\psi}(\mathbf{p})=p_{i} \tilde{\psi}(\mathbf{p})
$$

The probability distributions for finding position/momentum in a volume V / \tilde{V} are

$$
\operatorname{Prob}(\mathbf{X} \in V)=\int_{V} d^{3} x|\psi(\mathbf{x})|^{2}, \quad \operatorname{Prob}(\mathbf{P} \in \tilde{V})=\int_{\tilde{V}} d^{3} p|\tilde{\psi}(\mathbf{p})|^{2}
$$

