
Physics 6210/Spring 2008/Lecture 3

Lecture 3

Relevant sections in text: §1.2, 1.3

Spin states

We now construct a mathematical representation for the states of the spin 1/2 particle.
As before, we denote a state of the particle in which the component of the spin vector ~S
along the unit vector n̂ is known with certainty to be ±h̄/2 by |~S · n̂,±〉. We define our
Hilbert space of states as follows. We postulate that H is spanned by |~S · n̂,±〉 for any
particular choice of n̂, with different choices of n̂ just giving different bases. Thus, every
vector |ψ〉 ∈ H can be expanded via

|ψ〉 = a+|~S · n̂,+〉+ a−|~S · n̂,−〉. (1)

Note: if we fix n̂ once and for all, we might as well choose our z axis along n̂. In this case
we denote this basis by |Sz,±〉 ≡ |±〉.

Next, we define the scalar product on H by postulating that each set |~S · n̂,±〉 forms
an orthonormal basis:

〈~S · n̂,±|~S · n̂,±〉 = 1, 〈~S · n̂,∓|~S · n̂,±〉 = 0.

Since every vector can be expanded in terms of this basis, this defines the scalar product
of any two vectors. Indeed, let

|ψ〉 = a+|~S · n̂,+〉+ a−|~S · n̂,−〉, |φ〉 = b+|~S · n̂,+〉+ b−|~S · n̂,−〉,

then (exercise)
〈ψ|φ〉 = a∗+b+ + a∗−b−.

Note that the expansion coefficients in (1) can be computed by

a± = 〈~S · n̂,±|ψ〉.

This is just an instance of the general result for the expansion of a vector |ψ〉 in an
orthonormal (ON) basis |i〉, i = 1, 2, . . . , n, where the ON property takes the form

〈i|j〉 = δij .

We have (exercise)
|ψ〉 =

∑
i

ci|i〉, ci = 〈i|ψ〉.
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We can therefore write
|ψ〉 =

∑
i

|i〉〈i|ψ〉.

If we choose one of the spin bases, say, |~S · n̂,±〉, and we represent components of
vectors as columns, then the basis has components

〈~S · n̂,±|~S · n̂,+〉 =
(

1
0

)
〈~S · n̂,±|~S · n̂,−〉 =

(
0
1

)
.

More generally, a vector with expansion

|ψ〉 = a+|~S · n̂,+〉+ a−|~S · n̂,−〉

is represented by the column vector

〈~S · n̂,±|ψ〉 =
(
a+
a−

)
.

Note that the pair of complex numbers which characterizes a ket will be different in different
bases. The bra 〈ψ| corresponding to |ψ〉 has components forming a row vector:

〈ψ|~S · n̂,±〉 = (a∗+ a∗−).

Linear operators

Our next step in building a model of a spin 1/2 system using the rules of quantum
mechanics is to represent the observables (Sx, Sy, Sz) by self-adjoint operators on the
foregoing two-dimensional vector space. To do this we need to explain how to work with
linear operators in our bra-ket notation.

A linear operator A is a linear mapping from H to itself, that is, it associates to each
vector |ψ〉 a vector A|ψ〉. The “linear” requirement means

A(a|α〉+ b|β〉) = aA|α〉+ bA|β〉.

If you think of vectors as columns, then a linear operator is represented as a square matrix.
I will explain this in detail momentarily.

Some really trivial (but useful) examples of linear operators are the identity operator,
defined by

I|ψ〉 = |ψ〉, ∀ |ψ〉,

and the zero operator defined by

0|ψ〉 = 0 ← this is the zero vector.
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You should check via the definitions that these operators are linear.

The simplest non-trivial linear operator arises as follows. As you (should) know, if you
take a row vector and multiply it on the left with a column vector of the same size, you
will get a square matrix, that is, a linear operator. Using our bra-ket notation, given a ket
|α〉 and a bra 〈β| we can define a linear operator via

A = |α〉〈β|.

What this means is that A is defined as

A|ψ〉 = |α〉〈β|ψ〉.

You can easily check as an exercise that this is a linear operator. This operator is called
the “outer product” or “tensor product” operator. As an important special case, if |α〉 is
normalized, i.e., a unit vector: 〈α|α〉 = 1, then the operator |α〉〈α| is a projection operator
onto the 1-d vector space spanned by |α〉.

You can easily see that the sum of two linear operators, defined by,

(A+B)|ψ〉 = A|ψ〉+B|ψ〉,

is a linear operator as is the scalar multiple:

(cA)|ψ〉 = c(A|ψ〉).

There is a zero operator defined to map any vector to the zero vector. Thus the set of
linear operators forms a vector space! Moreover, you can check that the product of two
operators, defined by

(AB)|ψ〉 = A(B|ψ〉)

is a linear operator. Thus the set of linear operators forms an algebra. In general this
algebra is not commutative since, in general AB 6= BA. You already know this from the
point of view of matrices representing linear operators.

It is not hard to see that every linear operator can be written in terms of an orthonormal
basis (ONB) |i〉 as

A =
∑
i

Aij |i〉〈j|,

where
Aij = 〈i|A|j〉

are called the matrix elements of A in the basis provided by |i〉.* To see this, simply
expand the vectors |ψ〉 and A|ψ〉 in the ONB:

A|ψ〉 =
∑
i

|i〉〈i|A|ψ〉 =
∑
ij

|i〉〈i|A|j〉〈j|ψ〉 =
∑
ij

Aij |i〉〈j|ψ〉.

* More generally, any scalar of the form 〈α|A|β〉 is called a matrix element.
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A good example of this is the identity operator I, defined by,

I|ψ〉 = |ψ〉, ∀ |ψ〉.

It has the decomposition (good exercise!)

I =
∑
i

|i〉〈i|. (2)

This “resolution of the identity” is used all the time to manipulate various equations.
Don’t forget it! As a simple example, you can use (2) to view the expansion in a basis
formula as a pretty trivial identity:

|ψ〉 = I|ψ〉 =

(∑
i

|i〉〈i|

)
|ψ〉 =

∑
i

|i〉〈i|ψ〉 !

As mentioned earlier, the array of complex numbers Aij is in fact the matrix represen-
tation of the linear operator A in the given basis. To see how this works, we expand in an
orthonormal basis |i〉. Watch:

〈i|A|ψ〉 = 〈i|
∑
jk

Ajk|j〉〈k|ψ〉

=
∑
jk

Ajk〈i|j〉〈k|ψ〉

=
∑
jk

Ajkδij〈k|ψ〉

=
∑
k

Aik〈k|ψ〉.

The final line shows how the ith component of A|ψ〉 — the ith entry of the column vector
representing A|ψ〉 — is given by matrix multiplication of the array Aik with the column
vector 〈k|ψ〉. We can equally well see how the product of two matrices gets defined via the
product of linear operators. Consider the matrix elements of the operator AB:

〈i|AB|k〉 =
∑
j

〈i|A|j〉〈j|B|k〉

=
∑
j

AijBjk.

Thus the familiar rules of matrix algebra arise the expression of linear operators in a given
basis.
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