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Lecture 1

Relevant sections in text: §1.1

What is a theory?

Students often consider quantum mechanics to be rather strange compared to other
theories they have encountered (e.g., classical mechanics, electromagnetic theory). And
I guess it is a little unsettling to find position and momentum being represented as dif-
ferential operators, particles being described by complex waves, dynamics being defined
by the Schrödinger equation, measurements characterized by probabilities, and so forth.
In particular, the rules of quantum mechanics, at first sight, seem rather strange com-
pared to the rules of Newtonian mechanics (essentially just Newton’s 3 laws). But a lot
of the intuitive appeal of Newton’s laws comes from years of familiarity. Unfortunately,
the “strangeness” of quantum mechanics, largely bred from lack of familiarity, often leads
to the feeling that the subject is very difficult. Of course, the subject is not easy; nor
should it be - it is one our most advanced descriptions of nature! But even if the basics
seem a little difficult, it is only because one is having to use new mathematical models for
familiar physical structures. After all, wasn’t it a little unsettling when you first started
using vectors in a systematic way to describe displacements, velocities, and so forth? (Can
you remember that far back?) So, I would like to begin by emphasizing that, in many
ways, quantum mechanics is a theory like any other. To do this I must give a very coarse
grained description of what a theory is in general, and quantum mechanics in particular.
Of course, the devil – and the physics – is in the details.

Essentially, a physical theory is a set of rules (i.e., postulates) that can be used to
“explain” and/or predict the behavior of the world around us – in particular, the outcome
of experiments. Which experiments can be explained, how to characterize the physical
ingredients in these experiments, what information needs to be specified in advance, etc.
are part of the rules of the theory. By the way, keep in mind that a theory can never be
said to be “true”, but only that it “agrees with experiment”. It is always possible that the
next experiment will falsify the theory. And it is possible that more than one theory will be
able to explain a given set of results. Insofar as these results are all we have experimental
access to, the theories are equally good. Usually, though, there is one theory that explains
the most results with the “simplest” postulates. This theory is usually considered the
best. So, while classical mechanics can be used to explain a wide variety of macroscopic
observations, quantum mechanics can also explain these results* and a host of other results
from microscopic physics (atomic physics, nuclear physics, etc. ) that cannot be explained
using classical mechanics.

* This is essentially because quantum mechanics includes classical mechanics as an approx-
imation which is valid for macroscopic phenomena.
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It should be emphasized that the word “theory” has a number of connotations, and this
can be confusing. For example, quantum mechanics is a “theory”, but the use of quantum
mechanics to model the hydrogen atom as, say, a non-relativistic electron moving in a fixed
Coulomb field is also a “theory” in some sense — a theory of the hydrogen atom. Clearly
these two notions of “theory” have somewhat different logical standings in the sense that
one can build a variety of “theories” of the hydrogen atom (by adding, e.g., spin-orbit
coupling, special relativity, finite-size nucleus, etc. ) within the framework of the theory of
quantum mechanics. Given this slightly confusing state of affairs, I will try (but may fail)
to call quantum mechanics a “theory”, and I will call “models” the various theories built
from quantum mechanics (of, e.g., the hydrogen atom). Thus we can discuss the physical
“theory” called “quantum mechanics” and using the framework defined by this theory we
can build “models” of various physical phenomena (e.g., crystalline solids) using various
external considerations (e.g., periodic potentials, various approaches to conductivity, etc. ).
The model of a given phenomenon can be wrong without the theory of quantum mechanics
itself being wrong. On the other hand, if one is unable to build a satisfactory model of the
phenomenon owing to a fundamental failure of the parent theory (quantum mechanics),
then one might try to improve the theory of quantum mechanics itself. Similar comments
will apply to other theories/models, of course.

What are some successful physical theories? There are many, of course. Some ex-
amples are: Newton’s theory of matter and its interactions, valid at large length scales,
weak gravitational fields, and small velocities (“classical mechanics”); Maxwell’s theory of
the electromagnetic field and its interaction with electrically charged “sources”; Einstein’s
theories of relativity and gravitation; and, of course, the theory of matter and its interac-
tions at small length scales, which we call quantum mechanics, along with its descendant,
quantum field theory. One confusing feature of all this is that theories really come to us
in overlapping hierarchies. For example, using the classical Maxwell theory of electrody-
namics in conjunction with classical mechanics we can successfully model all macroscopic
electrodynamic systems. Such models are, ultimately, incorrect (being classical) and must
be incorporated into a more correct theory when dealiing with microscopic phenomena. A
“correct” theory of electromagnetic phenomena in general, and resultant models of atoms
in particular, arises via quantum electrodynamics in which the theory of quantum mechan-
ics (better: quantum field theory) is melded with Maxwell’s theory and then used to build
models of interacting charges, atoms, etc.

After all these general, philosophical-sounding statements it is time to get down to
business. What does it mean to have a set of “rules that can be used to ‘explain’ and/or
predict the outcome of experiments”? Of course useful theories are necessarily somewhat
intricate, but taking a very coarse-grained view of things, the structure of a generic theory
can be characterized in a pretty simple way. Basically, one can view a theory as a way of
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describing observables, states, and dynamics. Below we will describe each of these three.
As you know, mathematics has, for some centuries now, been the language and tool of
choice in building a physical theory. Consequently, one of our principal tasks in this course
will be to give a mathematical representation for these 3 basic ingredients.

Observables

Measurable aspects of the experimentally accessible world are the observables. Any
theory is to provide a means of assigning a mathematical representation to the observables.
By specifying the observables, we are going a long way toward specifying the kinds of
physical situations that our theory is meant to cover. Quantum mechanics postulates a
universal ground rule for observables: they must be self-adjoint operators on a Hilbert
space. The way in which we implement this rule may vary from physical model to physical
model. In fact, one physical model may admit several equivalent ways of representing
observables as operators.

As another example of observables, recall that using the theory of Newtonian mechanics
we can build a model of a “particle” in which all observables can be viewed as functions
of position and momentum, which we can call the basic observables. Mathematically, the
basic observables for a single particle in Newtonian theory are represented by 6 numbers,
(x, y, z, px, py, pz), which can be represented as a pair of vectors in Euclidean space. The
observables are then functions on the six-dimensional phase space. More generally, given
any dynamical system one can view the observables as being functions on the phase space.
Other quantities, like mass, electric charge, and time are in some sense “observable” too,
but in Newtonian mechanics these quantities appear as parameters in various equations,
not as quantities which one measures to document the behavior of the system. In other
words, while we may consider the way in which the position of a particle changes, we
normally don’t include in our model of a “particle” a time-varying mass or electric charge.
Of course, more sophisticated models of matter may attempt to give a better, or more
“fundamental” description of mass and electric charge in which these quantities become
observables in the sense described above.

As another example, consider the electromagnetic field as it is described in Maxwell’s
theory. Observables are, of course, the electric and magnetic field strengths. Also we
have, polarization of waves, energy density, momentum density, etc. All electromagnetic
observables (in Maxwell’s theory) are built from electric and magnetic field strengths,
which are the basic observables of the theory. Mathematically, they are represented as
vector fields. Another measurable quantity is the speed of light c. Like mass and charge
in Newtonian mechanics, this quantity appears as a parameter in Maxwell’s theory and
is not something that can change with the configuration of the system. In the context of
classical electrodynamics we don’t use the term “observable” for the speed of light in the
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language we are developing.

As my final example, consider the theory of bulk matter known as “statistical mechan-
ics”. This theory has a number of similarities with quantum mechanics. For now, let us
note that some of the observables are things like free energy, entropy, critical exponents,
etc. All of these quantities can be computed from the partition function, which is, in some
sense, the basic observable. Of course, statistical mechanics is normally built from classical
and/or quantum mechanics in which case the partition function itself is built from more
basic observables. By the way, temperature is, of course, a measurable quantity. But it
plays the role of a parameter in statistical mechanics in a canonical ensemble and so in this
case temperature is treated as a parameter just like mass and electric charge in classical
electrodynamics.

So, we see that different physical phenomena require different kinds of observables, and
different theories use different mathematical representations for the observables. One of
our two main goals this semester is to get a solid understanding of how quantum mechanics
represents observables.

Let us remark that in all of our examples — indeed, in most theories — the observable
called “time” enters as an adjustable parameter. It is normally not modeled as an observ-
able in the same sense as we model, say, the energy of a particle. In quantum mechanics
time is not an observable in the sense described above.

States

A physical system can be in a variety of “configurations”, that is, it can display a
variety of possible values for its observables. When we speak of the state of the system
we are referring to a mathematical object which can completely characterize the outcomes
of all possible measurements of the observables of the system (at a given time). Thus the
mathematical representation of state is intimately tied to the representation of observables.
Let us illustrate the notion of “state” with our previous examples.

In quantum mechanics the state of the system is usually characterized by a (unit)
vector from the Hilbert space of vectors upon which the operator-observables are acting.
Using this vector one can compute the probabilities for the outcomes of any measurement
via various mathematical manipulations involving the operator-observables. Of course, we
will be spending a lot of time developing this framework.

In the Newtonian mechanics of a particle, the state of the system can be specified
by giving a point in phase space. Indeed, all other observables are functions of these
observables (and the time) and so once one knows the point in phase space the system
occupies, one can say what any measurement will yield.
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In electromagnetic theory, the state of affairs is quite similar. In source-free electrody-
namics, the state of the system is equivalent to specifying the electric and magnetic fields
(at a given time).

In statistical mechanics we have a more subtle way of defining the state, which is
similar in spirit to what happens in quantum mechanics. To be explicit, let us focus
on “classical statistical mechanics” of a system of particles. From the point of view of
classical mechanics, the underlying, basic observables can be viewed as the coordinates
and momenta of all the particles making up the system (the phase space) and specifying
a point in phase space determines the state of the system. In statistical mechanics the
state is specified by giving a probability distribution on the phase space (which is a single
function), rather than a point in phase space as is done in Newtonian mechanics. From
the probability distribution one can compute all observables of statistical mechanics.

To get a better handle on the distinction between states and observables, you can
think as follows. The observables are the aspects of the system which, in principle, are
experimentally accessible. The state of a system characterizes the status of the observ-
ables. Often time the state reflects the way the system has been “prepared” (think “initial
conditions”). Given a particular preparation procedure (performed by various measure-
ments and/or filtering processes) the system will behave in a particular – indeed, unique
– way, as reflected in the behavior of its observables. A physical model for a system prin-
cipally involves an identification of the observables needed to describe the system. This is
done once and for all. The states of the system represent various ways the system can be
“started off’ and can be adjusted by experimental procedures.

Dynamics

The measured values of observables of a system will usually change in time; this is dy-
namics. Normally, a theory will contain a means of describing time evolution of the system,
that is, a “dynamical law”, or a “law of motion”. Assuming that we use a time-independent
mathematical model for the observables, we can view dynamics as a continuous change (in
time) of the state of the system according to some system of equations. This way of
formulating dynamics is what is often called the Schrödinger picture of dynamics, and a
famous example of the dynamical law is provided by the Schrödinger equation. In sta-
tistical mechanics, the state of the system is determined by a probability distribution on
phase space. In the Schrödinger picture this distribution evolves in time according to the
Liouville equation.

In classical mechanics the state of the system is specified by selecting a point in phase
space. The dynamical law is then determined, e.g., by a choice of Hamiltonian via Hamil-
ton’s equations. By solving Hamilton’s equations (with some choice of initial state) one
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determines a curve in phase space which can be viewed as the state at a given time.
Similarly, in electrodynamics, one can view the Maxwell equations as determining a one
parameter family of electric and magnetic fields and hence the state as a function of time.

One important aspect of dynamics that is usually incorporated in any theory is a very
basic notion of causality. In the Schrödinger picture, given the state of the system at one
time, the dynamical law should determine the state uniquely at any other time. Granted
this, you see that the state at a given time (along with the dynamical law - which is part
of the specification of the theory/model) will determine the outcomes of all measurements
at any time.

In general, the only thing that ultimately matters is what I will call the “physical
output” of the theory – the combination of states and observables which produce a verifiable
prediction about a measurement of the system. The physical output will, in general, vary
with time and one can mathematically represent this time variation by a change in the
state – this is the Schrödinger picture. One can also represent time evolution by changing
the representation of the observables in time, keeping the state fixed; this is the Heisenberg
picture. Other pictures are possible.

To summarize: A theory requires (1) A mathematical representation of observables;
(2) A mathematical representation of states and a prescription for determining the values
of the observables — the physical output of the theory — from any given state; (3) A
specification of a dynamical law, which tells us how to extract physical output as a function
of time. Our goal this semester will be to see how quantum mechanics takes care of (1),
(2), and (3) and uses them to build models of a number of physical systems.

Stern-Gerlach experiment

We now describe an experiment conducted by Stern and Gerlach in the early 1920’s.
It gives us a valuable demonstration of the kind of phenomenon that needs quantum
mechanics to explain it. It also provides an example of what is probably the simplest
possible quantum mechanical model. As you probably know, this experiment involves
the property of particles known (perhaps misleadingly) as their spin, which is an intrinsic
angular momentum possessed by the particles. Note, though, at the time of the experiment,
neither intrinsic spin nor quantum mechanics was very well understood! Our goal in
studying this important experiment is to introduce the basic rules of quantum mechanics
in what is probably the simplest possible mathematical setting.

The Stern-Gerlach experiment amounts to passing a beam of particles through a region
with a magnetic field which has the same direction everywhere, but a varying magnitude.
Recall that the classical potential energy of interaction of a magnetic moment ~µ with a
magnetic field ~B is −~µ · ~B. Thus the force (as opposed to the torque) exerted on the
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magnetic moment is non-zero if the magnetic field varies in space. We have

~F = ∇(~µ · ~B).

If the magnetic field varies only in one direction, then the force is parallel or anti-parallel
to that direction, depending upon the orientation of the magnetic moment relative to the
fixed direction of ~B. Thus the force experienced by the magnetic moment allows us to
measure the component of ~µ along the direction of ~B; we simply have to observe which
way the particles are deflected. Of course, this reasoning was purely classical, so we are
initially confident it will work with macroscopic objects, but it can be justified/explained
quantum mechanically. For now we just note that the correct quantum model of the
interaction of a magnetic moment with a magnetic field does indeed use the potential
energy function shown above, and since the atom is sufficiently massive its motion can be
well approximated using a classical mechanics description. Here we have a nice example
of how classical, macroscopic reasoning gives us important clues to modeling a quantum
mechanical, microscopic system.

Stern and Gerlach passed a beam of silver atoms through such an apparatus. These
atoms have a magnetic moment (thanks to the electron spin) and so are deflected by the
apparatus. Based upon a classical model of the atom’s magnetic moment as coming from
motion of the charge distribution, and given that the atoms in the beam have random
orientations of their magnetic moments, one expects a continuous deflection of the beam,
reflecting a continuous spread in the projections of the magnetic moment along the inho-
mogeneity axis. Instead, what was observed was that the beam splits into two parts. The
explanation for this phenomenon is that the magnetic moment vector ~µ of the atom is due
to the presence of an electron which carries intrinsic angular momentum ~S – its “spin”
— and hence a magnetic moment. (Here ~µ is proportional to ~S: µ = q

mcS) The electron
is in an atomic state which does not have any orbital angular momentum, so it’s motion
about the atom does not provide a contribution to the magnetic moment.* In this (initially
bizarre) explanation, the electron can be in one of two “spin states” relative to any given
direction. More precisely, the projection of the spin of an electron along any axis can only
take two values (±h̄/2). Such particles are said to have “spin 1/2”, an intrinsic (state-
independent) property of the electron. If each atom is randomly selected, one expects that
these two alternatives occur with 50-50 probability, and this is what is observed. Half the
beam gets deflected in each direction. To explain this discreteness – indeed, two-valued
nature – of an angular momentum is one challenge faced by any putative theory. But there
is much more...

Using Stern-Gerlach apparatuses, we can measure any component of the magnetic
moment – equivalently, the spin vector – of a spin 1/2 particle by aligning the SG magnetic

* Of course, there are 47 electrons in a silver atom. However 46 of them are in a state with
no net angular momentum and hence no net contribution to the magnetic moment.
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field direction along the axis of interest, then passing the beam of particles through and
seeing which way the particles are deflected, corresponding to spin “up” or “down” along
that direction. Let us therefore try to model the behavior of the spin vector ~S in such an
experiment, ignoring all the other “degrees of freedom” that the atoms might have. Thus
the atom is modeled as a “spin 1/2 particle”. Let us call an SG apparatus that measures
the spin along an axis characterized by a unit vector n̂ “SGn”. Thus the apparatus SGn
measures ~S · n̂. The empirical fact is that if you measure ~S · n̂ you always get ±h̄/2. Let us
pass a beam of spin 1/2 particles through SGn and keep, say, only the particles that deflect
according to ~S · n̂ having the value + h̄

2 . If we pass this filtered beam through another such
SGn/filter device we see that 100% of the beam passes through. We say that we have
“determined the spin along n̂ with certainty” for all the particles in the filtered beam. We
model this situation by saying that all the particles in the (filtered) beam are in the state
|~S · n̂,+〉. We say that we have “prepared” many particles all in the same state by passing
a beam of particles through an SG apparatus and only keeping those deflected up or down.

Suppose we pass a beam through the apparatus SGz and only keep one spin projec-
tion: “spin up”. We now have many electrons prepared in the state |Sz,+〉. Let us try
to pin down the value of Sx that these electrons possess. Pass the beam (all particles
in the state |Sz,+〉) through another Stern-Gerlach apparatus SGx. Particles are now
deflected according to the projection of their magnetic moments (or spin vectors) along
the x direction. What you find in this experiment is that the beam splits in half. This is
perfectly reasonable; we have already decided that any component of the spin has just two
projections along any given axis. Since there is nothing special about the x or z directions;
we should get similar behavior for both. In the SGz filtered beam we did not “prepare”
Sx in any special way, so it is not too surprising that we get the beam to split in half.

Let us continue our investigation as follows. We have passed our beam through SGz
and kept the “spin up” particles. We then pass these spin up particles through SGx; let
us focus on the beam that gave h̄/2 for the Sx measurement. Therefore, roughly half of
the beam that entered the SGx apparatus is kept, and we now have 1/4 of the original
particles left in our prepared beam. After this filtering process we can, if we like, verify
the value of Sx using SGx again; and find all the particles do indeed have Sx = h̄/2. Thus
we can represent the state of the particles by by |Sx,+〉.*

Now we have a beam of electrons that have been measured to have the following
properties: first , Sz is +h̄/2; second Sx is +h̄/2.† Given (1) and (2) above, it is reasonable
to believe that the electrons we have kept now have definite values for Sz and Sx since we

* Of course, one naturally prefers to write the state as something like |Sz,+;Sx,+〉, but we
shall see that this is not appropriate.

† We could now go and measure Sy in this doubly filtered beam; you will find that half the
beam has spin up along y, half has spin down (exercise). But let us not even bother with
this.
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have filtered out the only other possibilities. This belief does not agree with experiment!
Suppose you go back to check on the value of Sz. Take the beam that came out of SGz
with value h̄/2 and then SGx with the value +h̄/2 and pass it through SGz again. You
may expect that all of the beam is found to have a value +h̄/2 for Sz, but instead you will
find that beam splits in two! This is despite the fact that we supposedly filtered out the
spin down components along z.

So, if you measure Sz and get, say, h̄/2, and then you measure it again, you will get h̄/2
with probability one (assuming no other interactions have taken place). If you measure
Sz and get, say, h̄/2, then measure Sx and then measure Sz, the final measurement will
be ±h̄/2 with a 50-50 probability. This should get your attention: the values that you
can get for the observable Sz in two measurements depends upon whether or not you have
determined the value of Sx in between the Sz measurements.

Given this state of affairs, it is hard to make sense of the classical picture in which one
imagines the electron to have given, definite values of all its observables, e.g., Sx and Sz.
One sometimes says that the measurement of Sx has somehow “disturbed” the value of
Sz. This point of view is not incorrect, but is not a perfect description of what is going
on. For example, as we shall see, the quantum mechanical prediction is unambiguously
independent of the way in which we make the measurements. Nowhere do we really need
to know how the SG devices worked. Moreover, the “disturbance” in Sz due to the Sx
measurement is not a function of how carefully we make the Sx measurement, that is,
one cannot blame the strange behavior as coming from some “experimental error”, the
measurements can, ideally, be perfect and we still get the same result. The fact of the
matter is that one shouldn’t think of observables (such as Sz and Sx) has having given,
fixed, values that “exist” in the object of interest. This may be philosophically a bit sticky
(and psychologically a bit disturbing), but it seems to be quite alright as a description of
how nature actually works.

If all this seems perfectly reasonable to you, then you probably don’t understand it
too well. Our macroscopic experience with matter just doesn’t give any hint that this is
the way nature works.

Electrons (and other elementary particles) are not like tiny baseballs following classical
trajectories with tiny spin angular momentum arrows attached to them, and there is no
reason (experimentally) to believe that they are. It is a purely classical prejudice that
a particle has definite values for all observables that we can measure. Try to think this
way: what is a particle? It has mass, (total) spin, charge, etc. and other intrinsic, “real”
properties that do not change with the state of the particle. Based upon experiment, one
may want to assign other observable properties such as position, energy, orbital angular
momentum, spin component along an axis to the particle. But according to experiment,
these properties change with the state of the particle and cannot be viewed as “existing”
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in the particle independently of the measuring process (which changes the state). As it
turns out, according to the quantum mechanical explanation of this sort of phenomenon,
all you are guaranteed to be able to “assign” to a particle is probability distributions for
its various observables. Our next task is to build up the quantum mechanical model of the
spin 1/2 system using the rules of quantum mechanics.
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