Hints: Assignment 1

4b. Express your answer as a superposition of projection operators $|i\rangle\langle i|$, where

$$
A|j\rangle=a_{j}|j\rangle
$$

4c. You answer should be a simple function of \vec{x}^{\prime} and $\vec{x}^{\prime \prime}$.
$\mathbf{7 b}$. To see what is going on, consider the action of this operator on an eigenvector of A.
10. This can be turned into a straightforward 2×2 matrix problem. Make sure you express your eigenvectors as linear combinations of the given basis kets.
17. If $|E\rangle$ is an eigenvector of H with eigenvalue E, then so is $A_{1}|E\rangle$ and $A_{2}|E\rangle$.
20. Note that any normalized vector can be expressed as

$$
|\psi\rangle=\cos \alpha|+\rangle+\sin \alpha e^{i \beta}|-\rangle,
$$

for suitable choices of the real numbers α, β.

