
Classical Field Theory Electromagnetism: the simplest gauge theory

Electromagnetism: the simplest gauge theory

Electromagnetism

Let us now study some of the salient field theoretic properties of “electromagnetic

theory”. This is historically the first and also the simplest example of a “gauge theory”.

We shall see that certain structural features familiar from KG theory appear also for

electromagnetic theory and that new structural features appear as well.

We begin with a quick review of Maxwell’s equations.

PROBLEM: Maxwell’s equations for the electric and magnetic field ( ~E, ~B) associated to

charge density and current density (ρ,~j) are given by

∇ · ~E = 4πρ, (1)

∇ · ~B = 0, (2)

∇× ~B − 1

c

∂ ~E

∂t
= 4π~j, (3)

∇× ~E +
∂ ~B

∂t
= 0. (4)

Show that for any function φ and vector field ~A(~r, t) the electric and magnetic fields defined

by

~E = −∇φ− 1

c

∂ ~A

∂t
, ~B = ∇× ~A (5)

satisfy the second and fourth Maxwell equations shown above.

PROBLEM: Define the anti-symmetric array Fµν in inertial Cartesian coordinates xα =

(t, x, y, z), α = 0, 1, 2, 3 via

Fti = −Ei, Fij = εijkB
k, i, j = 1, 2, 3. (6)

Under a change of inertial reference frame corresponding to a boost along the x axis with

speed v the electric and magnetic fields change ( ~E, ~B)→ ( ~E′, ~B′), where

Ex′ = Ex, Ey′ = γ(Ey − vBz), Ez′ = γ(Ez + vBy) (7)

Bx′ = Bx, By′ = γ(By + vEz), Bz′ = γ(Bz − vBy). (8)
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Show that this is equivalent to saying that Fµν are the components of a tensor of type(
0
2

)
.

PROBLEM: Define the 4-current

jα = (ρ, ji), i = 1, 2, 3. (9)

Show that the Maxwell equations take the form

Fαβ,β = 4πjα, Fαβ,γ + Fβγ,α + Fγα,β = 0, (10)

where indices are raised and lowered with the usual Minkowski metric.

PROBLEM: Show that the scalar and vector potentials, (φ, ~A), when assembled into the

4-potential

Aµ = (φ,Ai), i = 1, 2, 3, (11)

are related to the electromagnetic tensor Fµν by

Fµν = ∂µAν − ∂νAµ. (12)

This is the general (local) solution to the homogeneous Maxwell equations Fαβ,γ +Fβγ,α+

Fγα,β = 0.

While the electromagnetic field can be described solely by the field tensor F in Maxwell’s

equations, if we wish to use a variational principle to describe this field theory we will have

to use potentials.* So, we will describe electromagnetic theory using the scalar and vectr

potentials, which can be viewed as a spacetime 1-form

A = Aα(x)dxα. (13)

Depending upon your tastes, you can think of this 1-form as (1) a (smooth) section of

the cotangent bundle of the spacetime manifold M ; (2) tensor field of type
(
0
1

)
; (3) a

connection on a U(1) fiber bundle; (4) a collection of 4 functions, Aα(x) defined in a given

coordinate system xα and such that in any other coordinate system xα′

A′α(x′) =
∂xβ

∂xα′
Aβ(x(x′)). (14)

* It can be shown using techniques from the inverse problem of the calculus of variations
that there is no variational principle for Maxwell’s equations built solely from ( ~E, ~B) and
their derivatives.
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In any case, A is called the “Maxwell field”, the “electromagnetic field”, the “electromag-

netic potential”, the “gauge field”, the “4-vector potential” (!), the “U(1) connection”, and

some other names as well, along with various mixtures of these.

As always, having specified the geometric nature of the field, the field theory is defined

by giving a Lagrangian. To define the Lagrangian we introduce the field strength tensor F ,

also known as the “Faraday tensor” or as the “curvature” of the gauge field A. We write

F = Fαβ(x)dxα ⊗ dxβ . (15)

The field strength is in fact a two-form (an anti-symmetric
(
0
2

)
tensor field):

Fαβ = −Fβα, (16)

and we can write

F =
1

2
Fαβ(dxα ⊗ dxβ − dxβ ⊗ dxα) =

1

2
Fαβdx

α ∧ dxβ ,

The field strength is defined as the exterior derivative of the Maxwell field:

F = dA, (17)

that is,

Fαβ = Aβ,α −Aα,β . (18)

This guarantees that dF = 0, which is equivalent to the homogeneous Maxwell equations

Fαβ,γ + Fβγ,α + Fγα,β = 0. Thus the only remaining Maxwell equations to be considered

are Fαβ,β = 4πjα.

The 6 independent components of F in an inertial Cartesian coordinate chart (t, x, y, z)

define the electric and magnetic fields as perceived in that reference frame. Note, however,

that all of the definitions given above are in fact valid on an arbitrary spacetime manifold

in an arbitrary system of coordinates.

The Lagrangian for electromagnetic theory – on an arbitrary spacetime (M, g) – can

be defined by the n-form (where n = dim(M)),

L = −1

4
F ∧ ∗F = L dx1 ∧ dx2 ∧ dx3 ∧ dx4, (19)

where ∗F is the Hodge dual defined by the spacetime metric g. In terms of components in

a coordinate chart we have the Lagrangian density given by

L = −1

4

√
−gFαβFαβ , (20)

where

Fαβ = gαγgβδFγδ. (21)
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Of course, we can – and usually will – restrict attention to the flat spacetime in the standard

Cartesian coordinates for explicit computations. It is always understood that F is built

from A in what follows.

Let us compute the Euler-Lagrange derivative of L. For simplicity we will work on flat

spacetime in inertial Cartesian coordinates so that

M = R4, g = gαβdx
α ⊗ dxβ = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz (22)

We have

δL = −1

2
FαβδFαβ

= −1

2
Fαβ(δAβ,α − δAα,β)

= −FαβδAβ,α
= Fαβ,αδAβ +Dα

(
−FαβδAβ

)
.

(23)

From this identity the Euler-Lagrange expression is given by

Eβ(L) = Fαβ,α, (24)

and the source-free Maxwell equations are

Fαβ,α = 0. (25)

There are some equivalent expressions of the field equations that are worth knowing

about. First of all, we have that

Fαβ,α = 0⇐⇒ gαγFαβ,γ ≡ Fαβ ,α = 0, (26)

so that the field equations can be expressed as

gαγ(Aβ,αγ −Aα,βγ) = 0. (27)

We write this using the wave operator (which acts component-wise on the 1-form A)

and the operator

divA = gαβAα,β = Aα,
α = Aα,α. (28)

via

Aβ − (divA),β = 0. (29)

You can see that this is a modified wave equation.

A more sophisticated expression of the field equations, which is manifestly valid on

any spacetime, uses the technology of differential forms. Recall that on a spacetime one
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has the Hodge dual, which identifies the space of p-forms with the space of n − p forms.

This mapping is denoted by

α→ ∗α. (30)

If F is a 2-form, then ∗F is an (n − 2)-form. The field equations are equivalent to the

vanishing of a 1-form:

∗d ∗ F = 0, (31)

where d is the exterior derivative. This equation is valid on any spacetime (M, g) and

is equivalent to the EL equations for the Maxwell Lagrangian as defined above on any

spacetime.

Let me show you how this formula works in our flat 4-d spacetime. The components

of ∗F are given by

∗Fαβ =
1

2
εαβγδF

γδ. (32)

The exterior derivative maps the 2-forms ∗F to a 3-form d ∗ F via

(d ∗ F )αβγ = 3∂[α ∗ Fβγ] =
3

2
∂[αεβγ]µνF

µν . (33)

The Hodge dual maps the 3-form d ∗ F to a 1-form ∗d ∗ F via

(∗d ∗ F )σ =
1

6
εσαβγ(d ∗ F )αβγ

=
1

4
εσαβγε

βγµν∂αFµν

= −δ[µ
σ δ

ν]
α ∂

αFµν

= Fασ,
α .

(34)

So that

∗d ∗ F = 0⇐⇒ Fαβ ,
α = 0. (35)

The following two problems are easy to do, but they establish some key structural

features of electromagnetic theory.

PROBLEM: Show that the EL derivative of the Maxwell Lagrangian satisfies the differ-

ential identity

DβEβ(L) = 0. (36)

PROBLEM: Restrict attention to flat spacetime in Cartesian coordinates, as usual. Fix

a vector field on spacetime, jα = jα(x). Show that the Lagrangian

Lj = −1

4

√
−gFαβFαβ + jαAα (37)
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gives the field equations

Fαβ ,α = −jβ . (38)

These are the Maxwell equations with prescribed electric sources having a charge density

ρ and current density ~j, where

jα = (ρ,~j). (39)

Use the results from the preceding problem to show that the Maxwell equations with

sources have no solution unless the vector field representing the sources is divergence-free:

∂αj
α = 0. (40)

Show that this condition is in fact the usual continuity equations representing conservation

of electric charge.

PROBLEM: Show that the Lagrangian density for source-free electromagnetism can

be written in terms of the electric and magnetic fields (in any given inertial frame) by

L = 1
2(E2−B2). This is one of the 2 relativistic invariants that can be made algebraically

from ~E and ~B.

PROBLEM: Show that ~E · ~B is relativistically invariant. Express it in terms of potentials

and show that it is just a divergence, with vanishing Euler-Lagrange expression.

Gauge symmetry

Probably the most significant aspect of electromagnetic theory, field theoretically

speaking, is that it admits an infinite-dimensional group of variational symmetries known

as gauge symmetries. Their appearance stems from the fact that

F = dA, (41)

so that if we make a gauge transformation

A→ A′ = A+ dΛ, (42)

where Λ:M → R, then

F ′ = dA′ = d(A+ dΛ) = dA = F, (43)

where we used the fact that, on any differential form, d2 = 0. It is easy to check all this

explicitly:

PROBLEM: For any function Λ = Λ(x), define

A′α = Aα + ∂αΛ. (44)
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Show that

A′α,β −A
′
β,α = Aα,β −Aβ,α. (45)

Show that, in terms of the scalar and vector potentials, this gauge transformation is equiv-

alant to

φ→ φ′ = φ− ∂tΛ, ~A→ ~A′ = ~A+∇Λ. (46)

This shows, then, that under the transformation

A→ A′ (47)

we have

F → F.

Evidently, the Lagrangian – which contains A only through F – is invariant under this

transformation of A. We say that the Lagrangian is gauge invariant.

Mathematically, the gauge transformations are a large set of variational symmetries.

Physically, the gauge transformation symmetry has no physical content in the sense that

one identifies physical situations described by gauge equivalent Maxwell fields. Thus the

Maxwell fields A provide a redundant description of the physics. (Indirectly there is a

physical role for this redundancy: the need to use the potentials A can be understood

from the desire to have a variational principle (crucial for quantum theory) and the desire

to express the theory in a fundamentally local form.)

The gauge symmetry is responsible for the fact that the field equations

A− d(div A) = 0 (48)

are not hyperbolic. Indeed, hyperbolic equations will have a Cauchy problem with unique

solutions for given initial data. It is clear that, because the function Λ is arbitrary, one can

never have unique solutions to the field equations for A associated to given Cauchy data.

To see this, let A be any solution for prescribed Cauchy data on a hypersurface t = const.

Let A′ be any other solution obtained by a gauge transformation:

A′ = A+ dΛ. (49)

It is easy to see that A′ also solves the field equations. This follows from a number of points

of view. For example, the field equations are conditions on the field strength F , which is

invariant under the gauge transformation. Alternatively, the field equations are invariant

under the field equations because the Lagrangian is. Finally, you can check directly that

dΛ solves the field equations:

[( − d div)dΛ]α = ∂β∂β(∂αΛ)− ∂α(∂β∂βΛ) = 0. (50)
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Since Λ is an arbitrary smooth function, we can choose the first two derivatives of Λ to

vanish on the initial hypersurface so that A′ and A are distinct solutions with the same

initial data.

Noether’s second theorem in electromagnetic theory

We have seen that a variational (or divergence) symmetry leads to a conserved cur-

rent. The gauge transformation defines a variational symmetry for electromagnetic theory.

Actually, there are many gauge symmetries: because each function on spacetime (modulo

an additive constant) defines a gauge transformation, the set of gauge transformations is

infinite dimensional! Let us consider our Noether type of analysis for these symmetries.

We will see that the analysis that led to Noether’s (first) theorem can be taken a little

further when the symmetry involves arbitrary functions.

Consider a 1-parameter family of gauge transformations:

A′ = A+ dΛs, (51)

characterized by a 1-parameter family of functions Λs where

Λ0 = 0. (52)

Infinitesimally, we have that

δA = dσ, (53)

where

σ =

(
∂Λs
∂s

)
s=0

.

It is easy to see that the function σ can be chosen arbitrarily just as we had for field

variations in the usual calculus of variations analysis. The Lagrangian is invariant under

the gauge transformation; therefore it is invariant under its infinitesimal version. Let us

check this explicitly. For any variation we have that

δL = −1

2
FαβδFαβ ,

and under a variation defined by an infinitesimal gauge transformation

δFαβ = ∂αδAβ − ∂βδAα
= ∂α(∂βσ)− ∂β(∂ασ)

= 0,

so that δL = 0.
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Now, for any variation the first variational identity is

δL = Fαβ,αδAβ +Dα

(
−FαβδAβ

)
.

For a variation induced by an infinitesimal gauge transformation we therefore must get

0 = Fαβ,α∂βσ +Dα

(
−Fαβ∂βσ

)
, (54)

which is valid for any function σ. Now we take account of the fact that the function σ is

arbitrary. We can integrate by parts again:

0 = −Fαβ ,αβ σ +Dα

(
−Fαβ∂βσ + Fαβ ,β σ

)
(55)

Integrate this identity over a spacetime region R:

0 = −
∫
R
Fαβ ,αβ σ +

∫
∂R

(
−Fαβ∂βσ + Fαβ ,β σ

)
dΣα, (56)

This must hold for any function σ; we can use the fundamental theorem of variational

calculus to conclude that the field equations satisfy the differential identity

Fαβ ,αβ = 0, (57)

which you proved directly in a previous homework problem. Note that this says the

Euler-Lagrange expression is divergence-free, and that this holds whether or not the field

equations are satisfied – it is an identity arising due to the gauge symmetry of the La-

grangian.

We have seen that the gauge symmetry, since it involves arbitrary functions, leads not

to a conserved current but rather to an identity satisfied by the field equations. This is

an instance of Noether’s second theorem, and the resulting identity is sometimes called the

“Noether identity” associated to the gauge symmetry. Let us have a look at Noether’s

second theorem in more generality.

Noether’s second theorem

We have seen that the identity

DαEα(L) = 0, (58)

for

Eα(L) = Fαβ ,β , (59)

follows from the gauge invariance of L. Let us give a fairly general statement of this

phenomenon, which is a version of Noether’s second theorem.
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Consider a system of fields ϕa, a = 1, 2, . . ., described by a Lagrangian L and field

equations defined by

δL = Ea(L)δϕa +Dαη
α, (60)

where ηα is a linear differential function of δϕa.

Let us define an infinitesimal gauge transformation to be an infinitesimal transforma-

tion

δϕa = δϕa(Λ), (61)

that is defined as a linear differential operator D on arbitrary functions ΛA:

δϕa(Λ) = [D(Λ)]a. (62)

The gauge transformation is an infinitesimal gauge symmetry if it leaves the Lagrangian

invariant up to a divergence of a spacetime vector field Wα(Λ) constructed as a linear

differential operator on the functions ΛA, A = 1, 2, . . .:

δL = DαW
α(Λ). (63)

Noether’s second theorem now asserts that the existence of a gauge symmetry implies

differential identities satisfied by the field equations. To see this, we simply use the fact

that, for any functions ΛA,

0 = δL −DαWα = Ea(L)[D(Λ)]a +Dα(ηα −Wα), (64)

where both η and W are linear differential functions of Λ. As before, we integrate this

identity over a region and choose the functions ΛA to vanish in a neighborhood of the

boundary so that the divergence terms can be neglected. We then have that, for all

functions ΛA, ∫
R
Ea(L)[D(Λ)]a = 0. (65)

Now imagine integrating by parts each term in Da(Λ) so that all derivatives of Λ are

removed. The boundary terms that arise vanish. This process defines the formal adjoint

D∗ of the linear differential operator D:∫
R
EaDa(Λ) =

∫
R

ΛA[D∗(E)]A, (66)

and we have that ∫
R

ΛA[D∗(E)]A = 0. (67)

The fundamental theorem of variational calculus then tells us that the Euler-Lagrange

expressions must obey the differential identities:

[D∗(E)]A = 0. (68)
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You can easily track this argument through our Maxwell example. The gauge trans-

formation is defined by the differential operator – the exterior derivative on functions –

[D(∗)]α = ∂αΛ. (69)

The infinitesimal transformation

δAα = [D(∗)]α (70)

is a symmetry of the Lagrangian with

Wα = 0. (71)

The adjoint of the exterior derivative is given by the divergence:

V α∂αΛ = −Λ∂αV
α + divergence, (72)

so that

[D∗(E)] = ∂αEα, (73)

which leads to the Noether identity

∂αEα = 0 (74)

for any field equations coming from a gauge invariant Lagrangian.

PROBLEM: Consider the electromagnetic field coupled to sources with the Lagrangian

density

Lj = −1

4

√
−gFαβFαβ + jαAα (75)

Show that this Lagrangian is gauge invariant if and only if the spacetime vector field jα is

chosen to be divergence-free. What is the Noether identity in this case?

Poincaré symmetry and the canonical energy-momentum tensor for electro-

magnetic theory

The Maxwell Lagrangian only depends upon the spacetime (M, g) for its construction.

Because the Poincaré group is the symmetry group of Minkowski space, we again have the

result that, assuming that M = R4 and g is flat, the Poincaré group acts as a symmetry

group. For your convenience I remind you that this group acts on spacetime with inertial

Cartesian coordinates xα via

xα → xα′ = Mα
β x

β + aα,
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where aα are constants defining a spacetime translation and the constant matrix Mα
β

defines a Lorentz transformation:

Mα
γM

β
δ ηαβ = ηγδ,

where

ηαβ =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

To every electromagnetic potential Aα we have a 10 parameter family of potentials obtained

by letting the Poincaré group act via the pull-back operation on 1-forms:

A′α(x) = M
β
αAβ(M · x+ a).

You can interpret the transformed potential as describing the electromagnetic field in

the transformed reference frame. Because the Lagrangian is the same in all reference

frames, these transformations define a 10 parameter family of (divergence) symmetries

of the Lagrangian and corresponding conservation laws. Let us focus on the spacetime

translation symmetry.

Consider a 1-parameter family of translations, say,

aα = λbα.

We have then

δAα = bβAα,β . (76)

This implies that

δFµν = bαFµν,α (77)

and hence that

δL = −1

2
bγFαβFαβ,γ = Dγ(−1

4
bγFαβFαβ) (78)

Recalling the first variational identity:

δL = Fαβ,αδAβ +Dα

(
−FαβδAβ

)
,

this leads to the conserved current

jα = −bγ
(
FαβAβ,γ −

1

4
δαγF

µνFµν

)
. (79)

You can easily check with a direct computation that jα is conserved, that is,

Dαj
α = 0, (80)
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when the field equations hold.

PROBLEM: Verify equations (76)–(80).

Since this must hold for each constant vector bα, we can summarize these conservation

laws using the canonical energy-momentum tensor

T αγ =

(
FαβAβ,γ −

1

4
δαγF

µνFµν

)
,

which satisfies

DαT αβ = 0, (81)

modulo the field equations.

There is one glaring defect in the structure of the canonical energy-momentum tensor:

it is not gauge invariant. Indeed, under a gauge transformation

A −→ A+ dΛ (82)

we have

T αβ −→ T
α
β + Fαµ∂µ∂βΛ. (83)

In order to see what to do about this, we need to consider some flexibility we have in

defining conserved currents. This is our next task.

“Trivial” conservation laws.

Faced with the gauge dependence of the canonical energy momentum tensor of electro-

magnetic theory, it is now a good time to discuss the notion of trivial conservation laws.

For any field theory (e.g., KG theory or electromagnetic theory) there are two ways to

construct conserved currents that are in some sense “trivial”. The first is to suppose that

we have a conserved current that actually vanishes when the field equations hold. For

example, in the KG theory we could use

jα = ( −m2)∂αϕ. (84)

It is, of course, easy to check that this current is conserved. It is even easier to check

that this current is completely uninteresting since it vanishes for any solution of the field

equations. It is the first type of “trivial” conservation law. Similarly, in electromagnetic

theory any vector field proportional to Fαβ ,β is likewise trivial. The triviality of these

conservation laws also can be seen by constructing the conserved charge in a region by

integrating j0 over a volume. Of course, when you try to substitute a solution of the
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equations of motion into j0 so as to perform the integral you get zero. Thus you end up

with the trivial statement that zero is conserved.

The second kind of “trivial” conservation law arises as follows. Suppose we create an

anti-symmetric,
(
2
0

)
tensor field locally from the fields and their derivatives:

Sαβ = −Sβα. (85)

For example, in KG theory we could use

Sαβ = kα∂βϕ− kβ∂αϕ, (86)

where kα = kα(x) is any vector field on spacetime. Now make a current via

jα = DβS
αβ . (87)

It is easy to check that such currents are always conserved, irrespective of field equations:

Dαj
α = DαDβS

αβ = 0. (88)

These sorts of conservation laws are trivial because they do not really reflect properties of

the field equations but rather simple derivative identities analogous to the fact that the

divergence of the curl is zero, or that the curl of the gradient is zero.

It is also possible to understand this second kind of trivial conservation laws from the

point of view of the conserved charge

QV =

∫
V
d3x j0. (89)

For a trivial conservation law arising as the divergence of a skew tensor (locally constructed

from the fields) we can integrate by parts, i.e., use the divergence theorem, to express QV
as a boundary integral:

QV =

∫
S
d2S niS

0i. (90)

From the continuity equation, the time rate of change of QV arises from the flux through

the boundary S of V :
d

dt
QV = −

∫
S
d2S nij

i, (91)

where n is the unit normal to the boundary and i = 1, 2, 3. But because this continuity

equation is an identity (rather than holding by virtue of field equations) this relationship

is tautological. To see this, we write:

−
∫
S
d2S nij

i = −
∫
S
d2S ni

(
Si0,0 +Sij ,j

)
=

d

dt

∫
S
d2S niS

0i. (92)
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where I used (1) the divergence theorem, and (2) a straightforward application of Stokes

theorem in conjunction with the fact that ∂S = ∂∂V = ∅ to get∫
S
d2S niS

ij ,j = 0. (93)

Thus the conservation law is really just saying that dQV

dt = dQV

dt Another way to view this

kind of trivial conservation law is to note that the conserved charge is really just a function

of the boundary values of the field in the region V and has nothing to do with the state of

the field in the interior of V .

To get this last result we used the fact that∫
S
d2S niS

ij ,j = 0, (94)

which is an straightforward application of Stokes theorem in conjunction with the fact that

∂S = ∅.

PROBLEM: Let S be a two dimensional surface in Euclidean space with unit normal ~n

and boundary curve C with tangent d~l. Show that∫
S
d2S niS

ij ,j =
1

2

∫
C

~V · d~l, (95)

where

V i =
1

2
εijkSjk.

We have seen that there are two kinds of conservation laws that are in some sense

trivial. We can of course combine these two kinds of triviality. So, for example, the

current

jα = Dβ(k[β∂α]ϕ) +Dαϕ( ϕ−m2ϕ) (96)

is trivial.

We can summarize our discussion with a formal definition. We say that a conservation

law jα is trivial if there exists a skew-symmetric tensor field Sαβ – locally constructed

from the fields and their derivatives – such that

jα = DβS
αβ , modulo the field equations. (97)

Given a conservation law jα (trivial or non-trivial) we see that we have the possibility

to redefine it by adding a trivial conservation law. Thus given one conservation law there

are infinitely many others “trivially” related to it. This means that, without some other
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criterion to choose among these conservation laws, there is no unique notion of “charge

density” ρ = j0 since one can change the form of this quantity quite a bit by adding

in a trivial conservation law. And, without some specific boundary conditions, there is

no unique choice of the total charge contained in a region. Usually, there are additional

criteria and specific boundary conditions that largely – if not completely – determine the

choice of charge density and charge in a region.

Next, let me mention that a nice way to think about trivial conservation laws is in

terms of differential forms. On our four dimensional spacetime our vector field jα can be

converted to a 1-form ω = ωαdx
α using the metric:

ωα = gαβj
β . (98)

This 1-form can be converted to a 3-form ∗ω using the Hodge dual

(∗ω)αβγ = gµδεαβγδωµ. (99)

If j is divergence free, this is equivalent to ∗ω being closed:

d(∗ω) = 0, modulo the field equations. (100)

Keep in mind that ω is really a 3-form locally constructed from the field and its derivatives,

that is, it is a 3-form valued function on the jet space for the theory. As you know, an

exact 3-form is of the form dβ for some 2-form β. If there is a 2-form β locally constructed

from the fields such that,

ω = dβ modulo the field equations (101)

clearly ω is closed. This is just the differential form version of our trivial conservation law.

Indeed, the anti-symmetric tensor field that is the “potential” for the conserved current is

given by

Sαβ =
1

2
εαβγδβγδ. (102)

Finally, let me mention and dispose of a common point of confusion concerning trivial

conservation laws. This point of confusion is why I felt compelled to stick in the phrase

“locally constructed from the field” in the discussion above. For simplicity we use the flat

metric and Cartesian coordinates on the spacetime manifold M = R4 in what follows.

To set up the difficulty, let me remind you of the following standard result from tensor

analysis. Let V α be a vector field on the manifold M . V α is not to be viewed as locally

constructed from the field, except in the trivial sense that it does not depend upon the

fields at all, only the spacetime point, V α = V α(x). If V α is divergence free,

∂αV
α = 0, (103)
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then there exists a tensor field Sαβ on M such that

V α = ∂βS
αβ . (104)

This is just the dual statement to the well-known fact that all closed 3-forms (indeed, all

closed forms of degree higher than 0) on R4 are exact. Thus, the De Rham cohomology

of R4 is trivial. This kind of result tempts one to conclude that all conservation laws are

trivial! Unlike the case in real life, you should not give in to temptation here. Conservation

laws should not be viewed as just vector fields on the spacetime manifold M . They are

more interesting than that: they are really ways of assigning vector fields on M to solutions

to the field equations. In particular, the conservation laws at a point x depend upon the

values of the fields and their derivatives at the point x. Thus we say that the conservation

laws are locally constructed from the fields, i.e., are functions on jet space (rather than

just x space). The correct notion of triviality is that a jα is trivial if it is (modulo the field

equations) a divergence of a skew tensor field Sαβ that is itself locally constructed from

the fields. If we take a conservation law and evaluate it on a given solution to the field

equations, then we end up with a divergence-free vector field on M (or a closed 3-form on

M , if you prefer). We can certainly write it as the divergence of a skew tensor on M (or as

the exterior derivative of a 2-form on M). But the point is there is no way to express this

skew tensor (2-form) as the evaluation on the solution of a local formula in terms of the

fields and their derivatives. So, while the set of conservation laws is obtained rather like

de Rham cohomology (closed modulo exact forms) it is actually a rather different kind of

cohomology. Sometimes this kind of cohomology is called “local cohomology”.

New and improved Maxwell energy-momentum tensor

Armed with our new and improved understanding of conservation laws we can revisit

the gauge-dependence of the canonical energy-momentum tensor in electromagnetic theory.

The canonical energy-momentum tensor is

T αγ =

(
FαβAβ,γ −

1

4
δαγF

µνFµν

)
,

This is not gauge invariant because of the explicit presence of the potentials A. The field

strength F is gauge invariant and it is possible to show that all local and gauge invariant

expressions will depend on the vector potential only through the field strength. With that

in mind we can write

T αγ =

(
FαβFβγ −

1

4
δαγF

µνFµν

)
− FαβAγ ,β

=

(
FαβFβγ −

1

4
δαγF

µνFµν

)
−Dβ(FαβAγ) +AγDβF

αβ .
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You can see that, modulo a set of trivial conservation laws the canonical energy-momentum

tensor takes the gauge invariant form

Tαγ = FαβFβγ −
1

4
δαγF

µνFµν .

This tensor, which is equivalent to the canonical energy-momentum tensor modulo trivial

conservation laws, is called the “gauge-invariant energy-momentum tensor” or the “im-

proved energy-momentum tensor” or the “general relativistic energy-momentum tensor”,

since this energy-momentum tensor serves as the source of the gravitational field in general

relativity and can be derived using the variational principle of that theory.

The improved energy-momentum tensor has another valuable feature relative to the

canonical energy-momentum tensor (besides gauge invariance). The canonical energy-

momentum tensor, defined as,

T αγ =

(
FαβAβ,γ −

1

4
δαγF

µνFµν

)
,

is not symmetric. If we define

Tαβ = gαγT γβ
then you can see that

T[αβ] = F[α
γ∂β]Aγ .

Here we used the notation

T[αβ] ≡
1

2
(Tαβ − Tβα).

On the other hand the improved energy-momentum tensor,

Tαγ = FαβFβγ −
1

4
δαγF

µνFµν .

is symmetric:

Tαβ = Tβα.

Why is all this important? Well, think back to the KG equation. There, you will recall,

the conservation of angular momentum, which stems from the symmetry of the Lagrangian

with respect to the Lorentz group, comes from the currents

Mα(µ)(ν) = xµTαν − xνTαµ = 2Tα[µxν].

These 6 currents were conserved since (1) Tαβ is divergence free (modulo the equations

of motion) and (2) T [αβ] = 0. This result will generalize to give conservation of angular

momentum in electromagnetic theory using the improved energy-momentum tensor. So

the improved tensor in electromagnetic theory plays the same role relative to angular

momentum as does the energy-momentum tensor of KG theory.
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Why did we have to “improve” the canonical energy-momentum tensor? Indeed, we

have a sort of paradox: the Lagrangian is gauge invariant, so why didn’t Noether’s the-

orem automatically give us the gauge invariant energy-momentum tensor? As with most

paradoxes, the devil is in the details. Noether’s theorem involves using the variational

identity in the form

δL = E(L) +Dαη
α,

to construct the conserved current from ηα (and any divergence which arises in the sym-

metry transformation of L). To consruct the canonical energy-momentum tensor we used

ηα = −FαβδAβ , and δAβ = bγAβ,γ

to get

ηα = −bγFαβAβ,γ ,

which we plugged into Noether’s theorem. As I have mentioned without explanation here

and there via footnotes, there is some ambiguity in the definition of ηα. In light of our

definition of trivial conservation laws, I think you can easily see what that ambiguity is.

Namely, the variational identity only determines ηα up to addition of the divergence of a

skew tensor (locally constructed from the fields and field variations). Our simplest looking

choice for ηα using the infinitesimal transformation (76) was not the best because it was

not gauge invariant. The improved energy-momentum tensor arises by making a gauge

invariant choice for ηα.
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