
Classical Field Theory Symmetries and Conservation Laws

Symmetries and Conservation Laws.

Conservation laws

In physics, conservation laws are of undisputed importance. They are the keystone

for every fundamental theory of nature. They also provide valuable physical information

about the complicated behavior of non-linear dynamical systems. From the mathematical

point of view, when analyzing the mathematical structure of differential equations and

their solutions the existence of conservation laws (and their attendant symmetries via

Noether’s theorem) are also very important. We will now spend some time studying some

conservation laws for the KG equation. Later we will introduce the notion of symmetry

and then describe a version of the famous Noether’s theorem relating symmetries and

conservation laws. As usual, we begin by defining everything in terms of the example at

hand: the KG field theory. It will then not be hard to see how the idea of conservation

laws works in general.

We say that a vector field on spacetime, constructed as a local function,

jα = jα(x, ϕ, ∂ϕ, . . . , ∂kϕ) (1)

is a conserved current or defines a conservation law if the divergence of jα vanishes whenever

ϕ satisfies its field equations (the KG equation). We write

Dαj
α = 0, when ( −m2)ϕ = 0. (2)

It is understood that the relations between derivatives defined by the field equations and

all the subsequent relations which can be obtained by differentiating them are imposed.

Note that we are using the total derivative notation, which is handy when viewing jα as a

function on jet space, that is, as a being built via some function of finitely many variables.

The idea of the conservation law is that it provides a formula for taking any given solution

the field equations

ϕ = ϕ(x), ( −m2)ϕ(x) = 0, (3)

and then building a vector field on spacetime – also called jα by a standard abuse of

notation –

jα(x) := jα(x, ϕ(x),
∂ϕ(x)

∂x
, . . . ,

∂kϕ(x)

∂xk
) (4)

such that
∂

∂xα
jα(x) = 0. (5)
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You can easily see in inertial Cartesian coordinates that our definition of a conserved

current simply says that the field equations imply a continuity equation for the density

ρ(x) (a function on spacetime) and the current density ~j(x) (a time dependent vector field

on space) associated with any solution ϕ(x) of the field equations:

∂ρ

∂t
+∇ ·~j = 0, (6)

where

ρ(x) = j0(x, ϕ(x),
∂ϕ(x)

∂x
, . . . ,

∂kϕ(x)

∂xk
), (7)

and

(~j)i = ji(x, ϕ(x),
∂ϕ(x)

∂x
, . . . ,

∂kϕ(x)

∂xk
), i = 1, 2, 3. (8)

The utility of the continuity equation is as follows. Define the total charge contained in

the region V of space at a given time t to be

QV (t) =

∫
V
d3x ρ(x). (9)

Note that the total charge is a functional of the field, that is, its value depends upon which

field you choose. The integral over V of the continuity equation implies that

d

dt
QV (t) = −

∫
∂V

~j · dS . (10)

Keep in mind that this relation is only valid when the field is a solution to the field equation.

PROBLEM: Derive (10) from the continuity equation.

We call the right hand side of (10) the net flux into V . The idea is then that the charge

QV is conserved since we can account for its time rate of change purely in terms of the

flux into or out of the region V . In this sense there is no “creation” or “destruction” of

the charge, although the charge can move from place to place.

With suitable boundary conditions, one can choose V large enough such that QV
contains “all the charge in the universe” for all time. In this case, by definition, charge

cannot enter or leave the region and so the total charge is constant in time. In this case

we speak of a constant of the motion. For example, we have seen that a reasonable set of

boundary conditions to put on the KG field (motivated, say, by the variational principle)

is to assume that the KG field vanishes at spatial infinity. Let us then consider the region

V to be all of space, that is, V = R3. If the fields vanish at spatial infinity fast enough,

then the net flux will vanish and we will have

dQV
dt

= 0. (11)
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Conservation of energy

Let us look at an example of a conservation law for the KG equation. Consider the

spacetime vector field locally built from the KG field and its first derivatives via

j0 =
1

2

(
ϕ2
,t + (∇ϕ)2 +m2ϕ2

)
, (12)

ji = −ϕ,t(∇ϕ)i.

Let us see how this defines a conserved current. We compute

D0j
0 = ϕ,tϕ,tt +∇ϕ · ∇ϕ,t +m2ϕϕ,t, (13)

and

Dij
i = −(∇ϕ,t) · (∇ϕ)− ϕ,t∇2ϕ. (14)

All together, we get

Dαj
α = ϕ,t

(
ϕ,tt −∇2ϕ+m2ϕ

)
= −ϕ,t( ϕ−m2ϕ).

(15)

Obviously, then, if we substitute a solution ϕ = ϕ(x) into this formula, the resulting vector

field jα(x) will be conserved.

The conserved charge QV associated with this conservation law is called the energy of

the KG field in the region V and is denoted by EV :

EV =

∫
V
d3x

1

2

(
ϕ2
,t + (∇ϕ)2 +m2ϕ2

)
. (16)

There are various reasons why we view this as an energy. First of all, if you put in physically

appropriate units, you will find that EV has the dimensions of energy. The best reason

comes from Noether’s theorem, which we shall discuss later. For now, let us recall that

the Lagrangian has the form

L = T − U, (17)

where the “kinetic energy” is given by

T =

∫
V
d3x

1

2
ϕ2
,t, (18)

and the “potential energy” is given by

U =

∫
V
d3x

1

2

(
(∇ϕ)2 +m2ϕ2

)
. (19)

Natually, then, the conserved charge that arises as

EV = T + U (20)
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is called the total energy (in the region V ).

The net flux of energy into V is given by

−
∫
∂V

~j · dS =

∫
∂V

ϕ,t∇ϕ · dS. (21)

If we choose V = R3 then the total energy of the KG field – in the whole universe – is

independent of time if the product of the time rate of change of ϕ and the radial derivative

of ϕ vanish as r →∞ faster than 1
r2

. Of course, for the total energy to be defined in this

case the integral of the energy density j0(x) must exist and this imposes decay conditions

on the solutions ϕ(x) to the KG equation. Indeed, we must have that ϕ(x), its time

derivative, and the magnitude of its spatial gradient should decay “at infinity” faster than
1
r3/2

. This guarantees that the net flux into R3 vanishes.

Conservation of momentum

Let us look at another conservation law for the KG equation known as the conservation

of momentum. These actually arise as a triplet of conservation laws in which

ρ(i) = ϕ,tϕ,i, i = 1, 2, 3 (22)

(~j(i))
l = −(∇ϕ)lϕ,i +

1

2
δli

[
(∇ϕ)2 − (ϕ,t)

2 +m2ϕ2
]
. (23)

PROBLEM: Verify that the currents

jα(i) := (ρ(i),
~j(i)) (24)

are conserved. (If you like, you can just fix a value for i, say, i = 1 and check that jα1 is

conserved.)

The origin of the name “momentum” of these conservation laws can be understood on

the basis of units: the conserved charges

P(i) =

∫
V
d3xϕ,tϕ,i, (25)

have the dimensions of momentum (if one takes account of the various dimensionful con-

stants that we have set to unity). The name can also be understood from the fact that

the each of the three charge densities ρ(i) corresponds to a component of the current den-

sities for the energy conservation law. Roughly speaking, you can think of this quantity as

getting the name “momentum” since it defines the “flow of energy”. In a little while we
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will get an even better explanation from Noether’s theorem. Finally, recall that the total

momentum of a system is represented as a vector in R3. The components of this vector

in the case of a KG field are the P(i).

Energy-momentum tensor

The conservation of energy and conservation of momentum can be given a unified

treatment by introducing a
(
0
2

)
tensor field on spacetime known as the energy-momentum

tensor (also known as the “stress-energy-momentum tensor”, the “stress-energy tensor”,

and the “stress tensor”). Given a KG field ϕ: R4 → R (not necessarily satisfying any field

equations), the energy-momentum tensor is defined as

T = dϕ⊗ dϕ− 1

2
g−1(dϕ, dϕ)g − 1

2
m2ϕ2g, (26)

where g is the metric tensor of spacetime. Our conservation laws were defined for the

KG field on flat spacetime and the formulas were given in inertial Cartesian coordinates

xα = (t, xi) such that the metric takes the form

g = gαβdx
α ⊗ dxβ , (27)

with

gαβ = diag(−1, 1, 1, 1). (28)

The formula given for the energy-momentum tensor is in fact correct on any spacetime.

The components of the energy-momentum tensor take the form

Tαβ = ϕ,αϕ,β −
1

2
gαβg

γδϕ,γϕ,δ −
1

2
m2ϕ2gαβ . (29)

This tensor field is symmetric:

Tαβ = Tβα. (30)

If desired, one can view this formula as defining a collection of functions on jet space

representing a formula for a tensor field on spacetime.

You can check that the conserved energy current is given by

jαenergy = −Tαt ≡ −gαβTtβ . (31)

In particular the energy density is T tt. Likewise, the conserved momentum currents are

given by

jαmomentum = −Tαi ≡ −g
αβTiβ , i = 1, 2, 3,

so that, in particular, the momentum density is given by −T ti. The conservation of energy

and momentum are encoded in the important identity:

gβγDγTαβ = ϕ,α( −m2)ϕ, (32)
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where we used the fact that

ϕ = gαβϕ,αβ . (33)

This relation shows that the energy-momentum tensor is divergence-free when it is evalu-

ated on a field ϕ = ϕ(x) satisfying the KG equation.

Although we are not stressing relativistic considerations in our presentation, it is per-

haps worth mentioning that there is no absolute distinction between energy and momen-

tum. A change of reference frame will mix up these quantities. One therefore usually speaks

of the “conservation of energy-momentum”, or the “conservation of four-momentum” rep-

resented by the four currents

j
β
(α)

= −Tβα = −gβγTαγ . (34)

Conservation of angular momentum

Finally, we mention 6 more conservation laws known as the conservation laws of rela-

tivistic angular momentum, which are given by the following 6 currents:

Mα(µ)(ν) = Tαµxν − Tανxµ. (35)

Note that

Mα(µ)(ν) = −Mα(ν)(µ), (36)

which is why there are only 6 independent currents.

PROBLEM: Show that these 6 currents are conserved. (Hint: Don’t panic! This is

actually the easiest one to prove so far, since you can use

gβγDγTαβ = ϕ,α( −m2)ϕ, (37)

which we have already established.)

In a given inertial reference frame labeled by coordinates xα = (t, xi) = (t, x, y, z) the

relativistic angular momentum naturally decomposes into two pieces in which (α, β) take

the values (i, j) and (0, i). Let us look at the charge densities; we have

ρ(i)(j) := M0(i)(j) = T 0ixj − T 0jxi, (38)

ρ(0)(i) := M0(0)(i) = T 00xi − T 0it. (39)

The first charge density represents the usual notion of (density of) angular momentum.

Indeed, you can see that it has the familiar position × momentum form. The second

charge density, ρ(0)(i), when integrated over a region V yields a conserved charge which
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can be interpreted, roughly, as the “center of energy at t = 0” in that region. Just as

energy and momentum are two facets of a single, relativistic energy-momentum, you can

think of these two conserved quantities as forming a single relativistic form of angular

momentum.

Let us note that while the energy-momentum conserved currents are (in Cartesian

coordinates) local functions of the fields and their first derivatives, the angular momentum

conserved currents are also explicit functions of the spacetime events. Thus we see that

conservation laws are, in general, functions on the full jet space (x, ϕ, ∂ϕ, ∂2ϕ, . . .).

Variational symmetries

Let us now, apparently, change the subject to consider the notion of symmetry in the

context of the KG theory. We shall see that this is not really a change in subject when we

come to Noether’s theorem relating symmetries and conservation laws.

A slogan for the definition of symmetry in the style of the late John Wheeler would

be “change without change”. When we speak of an object admitting a “symmetry”,

we usually have in mind some kind of transformation of that object that leaves some

specified aspects of that object unchanged. We can partition transformations into two

types: discrete and continuous. The continuous transformations depend continuously on

one or more parameters. For example, the group of rotations of R3 about the z-axis

defines a continuous transformation parametrized by the angle of rotation. The “inversion”

transformation

(x, y, z)→ (−x,−y,−z) (40)

is an example of a discrete transformation. We will be focusing primarily on continuous

transformations in what follows.

For a field theory such as the KG theory, let us define a one-parameter family of

transformations – also called a continuous transformation – to be a rule for building from

any given field ϕ a family of KG fields (not necessarily satisfying any field equations),

denoted by ϕλ. We always assume that the transformation starts at λ = 0 in the sense

that

ϕλ=0 = ϕ. (41)

You are familiar with such “curves in field space” from our discussion of the variational

calculus. We also assume that the transformation defines a unique curve through each

point in the space of fields. We view this as a transformation of any field ϕ, that varies

continuously with the parameter λ, and such that λ = 0 is the identity transformation. As

an example, we could have a transformation

ϕ(x) −→ ϕλ(x) := eλϕ(x), (42)
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which is an example of a scaling transformation. As another example, we could have

ϕ(t, x, y, z) −→ ϕλ(t, x, y, z) := ϕ(t+ λ, x, y, z), (43)

which is the transformation induced on ϕ due to a time translation.

We say that a continuous transformation is a continuous variational symmetry for the

KG theory if it leaves the Lagrangian invariant in the sense that, for any KG field ϕ = ϕ(x),

L(x, ϕλ(x),
∂ϕλ(x)

∂x
) = L(x, ϕ(x),

∂ϕ(x)

∂x
). (44)

Explicitly, we want

−1

2

√
−g
(
gαβ∂αϕλ(x)∂βϕλ(x) +m2ϕ2

λ

)
= −1

2

√
−g
(
gαβ∂αϕ(x)∂βϕ(x) +m2ϕ2

)
. (45)

An equivalent way to express this is that

∂

∂λ
L(x, ϕλ(x),

∂ϕλ(x)

∂x
) = 0. (46)

I think you can see why this is called a “symmetry”. While the KG field is certainly

changed by a non-trivial symmetry, from the point of view of the Lagrangian nothing is

changed by this field transformation.

Our treatment of variational symmetries did not rely in any essential way upon the

continuous nature of the transformation. For example, you can easily see that the discrete

transformation

ϕ→ −ϕ (47)

leaves the KG Lagrangian unchanged and so would be called a discrete variational sym-

metry. Any transformation of the KG field that leaves the Lagrangian unchanged will

be called simply a variational symmetry. Noether’s theorem, which is our goal, involves

continuous variational symmetries.

Infinitesimal symmetries

Let us restrict our attention to continuous symmetries. A fundamental observation go-

ing back to Lie is that, when considering aspects of problems involving continuous transfor-

mations, it is always best to formulate the problems in terms of infinitesimal transforma-

tions. Roughly speaking, the technical advantage provided by an infinitesimal description

is that many non-linear equations that arise become linear. The idea of an infinitesimal

transformation is that we consider the change in the field that arises for “very small” values

of the parameter λ. More precisely, we define the infinitesimal change of the field in much

the same way as we do a field variation,

δϕ =

(
∂ϕλ
∂λ

)
λ=0

, (48)
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which justifies the use of the same notation, I think. This notation, which is standard, is

also a bit confusing. A field variation in a variational principle involves studying all curves

through a specific point (a critical point) in field space so that, for each curve, δϕ is a single

function on spacetime. An infinitesimal transformation δϕ will be a spacetime function

which will depend upon the field ϕ being transformed. And it is this dependence which

is the principal object of study. From a more geometric point of view, field variations

in the calculus of variations represent tangent vectors at a single point in the space of

fields. An infinitesimal transformation is a vector field on the space of fields – a continuous

assignment of a vector to each point in field space.

An example is in order. For the scaling transformation

ϕλ = eλϕ, (49)

we get

δϕ = ϕ, (50)

which shows quite clearly that δϕ is built from ϕ and so it varies from point to point in

the space of fields. Likewise for time translations:

ϕλ(t, x, y, z) = ϕ(t+ λ, x, y, z) (51)

δϕ = ϕ,t. (52)

Of course, just as it is possible to have a constant vector field, it is possible to have a

continuous transformation whose infinitesimal form happens to be independent of ϕ. For

example, given some function f = f(x) the transformation

ϕλ = ϕ+ λf (53)

has the infinitesimal form

δϕ = f. (54)

This transformation is sometimes called a field translation.

The infinitesimal transformation gives a formula for the “first-order” change of the field

under the indicated continuous transformation. This first order information is enough to

completely characterize the transformation. The idea is that a finite continuous transfor-

mation can be viewed as being built by composition of “many” infinitesimal transforma-

tions. Indeed, if you think of a continuous transformation as a family of curves foliating

field space, then an infinitesimal transformation is the vector field defined by the tangents

to those curves at each point. As you may know, it is enough to specify the vector field to

determine the foliation of curves (via the “flow of the vector field”). If this bit of mathe-

matics is obscure to you, then you may be happier by recalling that, say, the “electric field

lines” are completely determined by specifying the electric vector field.
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For a continuous transformation to be a variational symmetry it is necessary and

sufficient that its infinitesimal form defines an (infinitesimal) variational symmetry. By

this I mean that the variation induced in L by the infinitesimal transformation vanishes

for all fields ϕ. That this condition is necessary is clear from our earlier observation that

a continuous symmetry satisfies can be defined by:

∂

∂λ
L(x, ϕλ(x),

∂ϕλ(x)

∂x
) = 0. (55)

Clearly, this implies that

0 = =
∂

∂λ
L(x, ϕλ(x),

∂ϕλ(x)

∂x
)
∣∣∣
λ=0

=
∂L
∂ϕ

δϕ+
∂L
∂ϕ,α

δϕα

= δL.

(56)

This last equation is precisely the condition that the infinitesimal change in the Lagrangian

induced by the infinitesimal transformation must vanish, so the infinitesimal symmetry

condition is necessary. That this condition is also sufficient follows from the fact that

it must hold at all points in the space of fields, so that the derivative with respect to λ

vanishes everywhere on the space of fields. Thus one often checks whether a continuous

transformation is a variational symmetry by just checking its infinitesimal condition (56).

Divergence symmetries

We have defined a (variational) symmetry as a transformation that leaves the La-

grangian invariant. This is a reasonable state of affairs since the Lagrangian determines

the field equations (via the Euler-Lagrange equations), and the conservation laws are en-

forced by the field equations, as we have seen. However, we have also seen that any two

Lagrangians L and L′ differing by a divergence

L′ = L+DαW
α (57)

will define the same EL equations since

0 = E(DαW
α) = E(L′)− E(L). (58)

Therefore, it is reasonable to generalize our notion of symmetry ever so slightly. We say

that a transformation is a divergence symmetry if the Lagrangian only changes by the

addition of a divergence. In infinitesimal form, a divergence symmetry satisfies

δL = DαW
α, (59)
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for some spacetime vector field Wα, built from the KG field. Of course, a variational

symmetry is just a special case of a divergence symmetry arising when Wα = 0.

You can check that the scaling transformation is neither a variational symmetry nor

a divergence symmetry for the KG Lagrangian. On the other hand, the time translation

symmetry

δϕ = ϕ,t (60)

is a divergence symmetry of the KG Lagrangian. Let us show this. We begin by writing

this Lagrangian as

L = −1

2

√
|g|
(
gαβϕ,αϕ,β +m2ϕ2

)
, (61)

where gαβ = diag(−1, 1, 1, 1). We then have

δL = −
√
|g|
(
gαβϕ,αϕ,βt +m2ϕϕ,t

)
= DtL
= Dα (δαt L) ,

(62)

so that we can choose

Wα = δαt L. (63)

Physically, the presence of this symmetry reflects the fact that there is no preferred

instant of time in the KG theory. A shift in the origin of time t→ t+ constant does not

change the field equations.

A first look at Noether’s theorem

We now have enough technology to have a first, somewhat informal look at Noether’s

theorem relating symmetries and conservation laws. The idea is as follows. Consider a

Lagrangian of the form

L = L(x, ϕ, ∂ϕ). (64)

Of course, the KG Lagrangian is of this form. Suppose that δϕ is an infinitesimal variational

symmetry. Then,

δL = 0 (65)

everywhere in the space of fields But, at any given point in field space, we can view the

transformation δϕ as a field variation, so that we can take advantage of the identity we

used to compute the EL equations:

δL = E(L)δϕ+DαV
α, (66)

where

E(L) =
∂L
∂ϕ
−Dα

(
∂L
∂ϕ,α

)
, (67)
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and*

V α =
∂L
∂ϕ,α

δϕ. (68)

This identity holds for any field variation. By hypothesis, our field variation is some field

built from ϕ that has the property that δL = 0, so that we have the relation

DαV
α = −E(L)δϕ. (69)

This is exactly the type of identity that defines a conserved current V α since it says that

the divergence of V α will vanish if V α is built from a KG field ϕ that satisfies the EL-

equation (the KG equation). Note that the specific form of V α as a function of ϕ (and its

derivatives) depends upon the specific form of the Lagrangian via ∂L
∂ϕ,α

and on the specific

form of the transformation via δϕ.

More generally, suppose that the infinitesimal transformation δL defines a divergence

symmetry, that is, there exists a vector field Wα built from ϕ such that

δL = DαW
α. (70)

We still get a conservation law since our variational identity becomes

DαW
α = E(L)δϕ+DαV

α, (71)

which implies

Dα(V α −Wα) = −E(L)δϕ. (72)

To summarize, if δϕ is a divergence symmetry of L(x, ϕ, ∂ϕ),

δL = DαW
α, (73)

then there is a conserved current given by

jα =
∂L
∂ϕ,α

δϕ−Wα. (74)

Time translation symmetry and conservation of energy

We can now easily see how the conserved current associated with conservation of energy

arises via the time translation symmetry. Recall that time translation symmetry is a

divergence symmetry:

δϕ = ϕ,t =⇒ δL = Dα(δαt L). (75)

* There is an ambiguity in the definition of V α here which we shall ignore for now to keep
things simple. We will confront it when we study conservation laws in electromagnetism.
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We can therefore apply our introductory version of Noether’s theorem to obtain a conserved

current:
jα = −gαβϕ,βϕ,t − δαt L

= −Tαt ,
(76)

which is our expression of the conserved energy current in terms of the energy-momentum

tensor.

By the way, it is not hard to see that the existence of the time translation symmetry,

and hence conservation of energy, is solely due to the fact that the KG Lagrangian has no

explicit t dependence. Consider any Lagrangian whatsover

L = L(x, ϕ, ∂ϕ, . . .) (77)

satisfying
∂

∂t
L(x, ϕ, ∂ϕ, . . .) = 0 (78 = 0.)

From the identity

DtL =
∂L
∂t

+
∂L
∂ϕ

ϕ,t +
∂L
∂ϕ,α

ϕ,tα

we have
∂L
∂ϕ

ϕ,t +
∂L
∂ϕ,α

ϕ,tα = DtL,

so that the time translation δϕ = ϕ,t will yield a divergence symmetry and hence conser-

vation of energy. One says that the conserved current for energy is the Noether current

associated to time translational symmetry.

Space translation symmetry and conservation of momentum

We can also use spatial translation symmetry to obtain conservation of momentum.

The symmetry is defined, for i = 1, 2, 3, by

ϕ(t, xi)→ ϕλ(t, xi) = ϕ(t, xi + λbi), (79)

where bi are three constants – a constant vector field b in space. Infinitesimally, we have

δϕ = b · ∇ϕ = biϕ,i. (80)

To check that this is a symmetry of the KG Lagrangian we compute

δL = ϕ,t(b · ∇ϕ,t)−∇ϕ · ∇(b · ∇ϕ)−m2ϕ(b · ∇ϕ)

= b · ∇L
= ∇ · (bL)

= DαW
α,

(81)
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where

Wα = (0, biL). (82)

As before, it is not hard to see that this result is a sole consequence of the fact that the

Lagrangian has no dependence on the spatial coordinates. In particular, we have

bi
∂

∂xi
L(x, ϕ, ∂ϕ, . . .) = 0. (83)

Thus we have the conservation law

jα = (ρ, ji), (84)

with

ρ = ϕ,tb · ∇ϕ, (85)

and

ji = −ϕ,ib · ∇ϕ+
1

2
bi
(

(∇ϕ)2 − ϕ2
,t +m2ϕ2

)
. (86)

Since the vector b is arbitrary, it is easy to see that we really have three independent

conservation laws here corresponding to 3 linearly independent choices for b. These three

conservation laws correspond to the conservation laws for momentum that we had before.

The relation between ρ and ji here and ρ(i) and ~j(i) there is given by

ρ = bkρ(k), ji = bk(~j(k))
i. (87)

You can see that the translational symmetry in the spatial direction defined by b leads to

a conservation law for the component of momentum along b. Thus the three conserved

momentum currents are the Noether currents associated with spatial translation symmetry.

Conservation of energy-momentum. Energy-momentum tensor.

We can treat the conservation of energy-momentum in a nice, unified fashion using

our four-dimensional tensor notation. Let aα be any constant vector field on spacetime.

Consider the continuous transformation, a spacetime translation,

ϕλ(xα) = ϕ(xα + λaα), δϕ = aαϕ,α. (88)

As a nice exercise you should check that we then have

δL = Dα(aαL) (89)

so that from Noether’s theorem we have that

jα = −
√
|g|gαβϕ,β(aγϕ,γ)− aαL (90)
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is conserved. By choosing aα to define a time or space translation we get the corresponding

conservation of energy or momentum.

Since aα are arbitrary constants, it is easy to see that for each value of γ, the current

jα(γ) = −
√
|g|gαβϕ,βϕ,γ − δαγL (91)

is conserved, corresponding to the four independent conservation laws of energy and mo-

mentum. Substituting for the KG Lagrangian:

L = −1

2

√
|g|
(
gαβϕ,αϕ,β −

1

2
m2ϕ2

)
, (92)

we get that

jα(γ) = −
√
|g|Tαγ ≡ −

√
|g|gαβTβγ . (93)

Thus the energy-momentum tensor can be viewed as set of Noether currents associated

with spacetime translational symmetry.

PROBLEM: Verify that the Noether currents associated with a spacetime translation do

yield the energy-momentum tensor.

Angular momentum revisited

We have seen the correspondence between spacetime translation symmetry and con-

servation of energy-momentum. What symmetry is responsible for conservation of angular

momentum? It is Lorentz symmetry. Recall that the Lorentz group is a combination of

“boosts” and spatial rotations. By definition, a Lorentz transformation is a linear trans-

formation on the spacetime R4,

xα −→ Sαβx
β , (94)

that leaves invariant the quadratic form

gαβx
αxβ = −t2 + x2 + y2 + z2. (95)

We have then

Sαγ S
β
δ gαβ = gγδ. (96)

Consider a 1-parameter family of such transformations, S(λ), such that

Sαβ (0) = δαβ ,

(
∂Sαβ
∂λ

)
λ=0

=: ωαβ (97)
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Infinitesimally we have that

ωαγ gαδ + ω
β
δ gγβ = 0. (98)

Defining

ωαβ = gβγω
γ
α (99)

we see that a Lorentz transformation is “generated” by ω if and only if the array ωαβ is

anti-symmetric:

ωαβ = −ωβα. (100)

Consider the following transformation

ϕλ(xα) = ϕ(Sαβ (λ)xβ), (101)

so that infinitesimally we have

δϕ = (ωαβx
β)ϕ,α, (102)

with an antisymmetric ωαβ as above. It is now a short computation to check that, for the

KG Lagrangian,

δL = Dα

(
ωαβx

βL
)
. (103)

This relation follows from

ωαγ gαδ + ω
β
δ gγβ = 0. (104)

The resulting Noether current is given by

jα = −gαβϕ,β(ω
γ
δ x

δ)ϕ,γ − ωαβx
βL

= ωγδM
α(γ)(δ),

(105)

where Mα(γ)(δ) are the conserved currents associated with relativistic angular momentum.

Spacetime symmetries

The symmetry transformations that we have been studying involve spacetime transla-

tions:

xα −→ xα + λaα, (106)

where aα = const. and Lorentz transformations,

xα −→ Sαβ (λ)xβ , (107)

where

SαβS
γ
δ ηαγ = ηβδ. (108)
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These symmetries are, naturally enough, called spacetime symmetries since they involve

transformations in spacetime. These symmetry transformations have a nice geometric

interpretation which goes as follows.

Given a spacetime (M, g) we can consider the group of diffeomorphisms, which are

smooth mappings of M to itself with smooth inverses. Given a diffeomorphism

f :M →M, (109)

there is associated to the metric g a new metric f∗g via the pull-back. In coordinates xα

on M the diffeomorphism f is given as

xα → fα(x), (110)

and the pullback metric has components related to the components of g via

(f∗g)αβ(x) =
∂fγ

∂xα
∂fδ

∂xβ
gγδ(f(x)). (111)

We say that f is an isometry if

f∗g = g. (112)

The idea of an isometry is that it is a symmetry of the metric – the spacetime points have

been moved around, but the metric can’t tell it happened. Consider a 1-parameter family

of diffeomorphisms fλ such that f0 = identity. It is not hard to see that the tangent

vectors at each point of the flow of fλ defines a vector field X. The Lie derivative of the

metric along X is defined as

LXg :=

(
d

dλ
f∗λg
)
λ=0

. (113)

If fλ is a 1-parameter family of isometries then we have that

LXg = 0. (114)

It is not too hard to verify that the spacetime translations and the Lorentz translations

define isometries of the Minkowski metric

g = ηαβdx
α ⊗ dxβ . (115)

In fact, it can be shown that all continuous isometries of flat spacetime are contained in the

Poincaré group, which is the group of diffeomorphisms built from spacetime translations

and Lorentz transformations.

The KG Lagrangian depends upon a choice of spacetime for its definition. Recall

that a spacetime involves specifying two structures: a manifold M and a metric g on

17 c© C. G. Torre



Classical Field Theory Symmetries and Conservation Laws

M . Isometries are symmetries of that structure: they are diffeomorphisms – symmetries

of M – that also preserve the metric. It is not too surprising then that the Lagrangian

symmetries that we have been studying are symmetries of the spacetime since that is the

only structure that is used to construct the Lagrangian. The existence of conservation laws

of energy, momentum and angular momentum is contingent upon the existence of suitable

spacetime symmetries.

Internal symmetries

There is another class of symmetries in field theory that is very important since, for

example, it is the source of other conservation laws besides energy, momentum and angular

momentum. This class of symmetries is known as the internal symmetries since they do

not involve any transformations in spacetime, but only on the space of fields.

There is an easy to spot discrete internal symmetry for the KG theory. You can easily

check that the transformation ϕ → −ϕ does not change the Lagrangian. This symmetry

extends to self-interacting KG theories with potentials which are an even function of ϕ,

e.g., the double well potential. There are no interesting continuous internal symmetries of

the KG theory unless one sets the rest mass to zero. Then we have the following situation.

PROBLEM: Consider the KG theory with m = 0. Show that the transformation

ϕλ = ϕ+ λ (116)

is a variational symmetry. Use Noether’s theorem to find the conserved current and con-

served charge.

The charged KG field and its internal symmetry

I will let you play with that simple example and move on to a slightly new field theory

that admits an internal symmetry, the charged KG field. The charged KG field can be

viewed as a mapping

ϕ:M → C, (117)

so that there are really two real-valued functions in this theory. The Lagrangian for the

charged KG field is

L = −
√
−g(gαβϕ,αϕ

∗
,β +m2|ϕ|2). (118)

PROBLEM: Show that this Lagrangian is the sum of the Lagrangians for two (real-

valued) KG fields ϕ1 and ϕ2 with m1 = m2 and with the identification

ϕ =
1√
2

(ϕ1 + iϕ2).
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From this problem you can surmise that the field equations for the charged KG field

consist of two identical KG equations for the real and imaginary parts of ϕ. In terms

of the complex-valued function ϕ you can check that the field equations – computed as

Euler-Lagrange equations or via the critical points of the action – are simply

Eϕ(L) = ( −m2)ϕ∗ = 0, (119)

Eϕ∗(L) = ( −m2)ϕ = 0. (120)

Note that one can do our field-theoretic computations using the real functions ϕ1 and ϕ2

or using the familiar trick of using “complex coordinates” on the space of fields, that is,

treating ϕ and ϕ∗ as independent variables. In any case, one has doubled the size of the

field space. As we shall see, the new “degrees of freedom” that have been introduced allow

for a notion of conserved electric charge. Additionally, in the corresponding quantum field

theory they also allow for the introduction of “anti-particles”.

It is easy to see that the Lagrangian for the charged KG field admits the symmetry

transformation

ϕλ = eiλϕ, ϕ∗λ = e−iλϕ∗ (121)

This continuous variational symmetry is given various names. Sometimes it is called a

“phase transformation”, sometimes a “rigid U(1) transformation”, sometimes a “gauge

transformation of the first kind”, sometimes a “global U(1) transformation”, and some-

times various mixtures of these terms. Whatever the name, you can see that it is simply a

rotation in the space of values of the fields ϕ1 and ϕ2 that were defined in the last problem.

The Lagrangian is rotationally invariant in field space, hence the symmetry.

It is straightforward to compute the conserved current associated with the U(1) sym-

metry, using Noether’s theorem. The only novel feature here is that we have more than

one field. We therefore give the gory details. The infinitesimal transformation is given by

δϕ = iϕ, δϕ∗ = −iϕ∗ (122)

The variation of the Lagrangian is, in general, given by

δL = Eϕ(L)δϕ+ Eϕ∗(L)δϕ∗ +Dα

(
∂L
∂ϕ,α

δϕ+
∂L
∂ϕ∗,α

δϕ∗
)
. (123)

From the phase symmetry we know that when we set δϕ = iλϕ it follows that δL = 0, so

we have

0 = Eϕ(L)iλϕ− Eϕ∗(L)iλϕ∗ +Dα

(
∂L
∂ϕ,α

iλϕ− ∂L
∂ϕ∗,α

iλϕ∗
)
. (124)

Using
∂L
∂ϕ,α

= gαβϕ∗,β , (125)
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∂L
∂ϕ∗,α

= gαβϕ,β , (126)

we get a conserved current

jα = −igαβ
(
ϕ∗ϕ,β − ϕϕ∗,β

)
. (127)

PROBLEM: Verify directly from the above formula for jα that

Dαj
α = 0, (128)

when the field equations for ϕ and ϕ∗ are satisfied.

The total “U(1) charge” contained in a spatial volume V at t = const. is given by

Q =

∫
V
d3x

(
ϕ∗ϕ,t − ϕϕ∗,t

)
. (129)

Note that the sign of this charge is indefinite: the charged KG field contains both positive

and negative charges. This charge can be used to model electric charge in electrodynamics.

It can also be used to model the charge which interacts via neutral currents in electroweak

theory.

More generally. . .

We can generalize our previous discussion as follows. Recall that, given a group G, a

(linear) representation is a pair (r, V ) where V is a vector space and r:G → GL(V ) is a

group homomorphism, that is, r is an identification of linear transformations r(g) on V

with elements g ∈ G such that

r(g1g2) = r(g1)r(g2). (130)

This way of viewing things applies to the U(1) symmetric charged Klein-Gordon theory

as follows. For the charged KG field the group G = U(1), the set of phases eiλ labeled by λ

with group multiplication being ordinary multiplication of complex numbers. The vector

space was V = C, and the representation r was via multiplication of elements z ∈ C by the

phase z → r(λ)z = eiλz. In that case, the internal symmetry arose as a transformation of

the complex-valued field, which makes sense since we can view ϕ as a map from spacetime

into the representation vector space, in this case, C where the group acts according to its

representation.
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The generalization of the U(1) symmetric charged KG field to a general group is now

clear. Given a group G one picks a representation (r, V ). One considers fields that are

maps into V , we write

ϕ:M → V. (131)

Each element g ∈ G defines a field transformation via

ϕ −→ ρ(g)ϕ. (132)

While it is possible to generalize still further, this construction captures almost all instances

of (finite-dimensional) internal symmetries in field theory. Of course, for the transformation

just described to be a (divergence) symmetry, it is necessary that the Lagrangian be

suitably invariant under the action of r(g). One can examine this issue quite generally,

but we will be content with exhibiting another important example.

SU(2) symmetry

The group SU(2) can be defined as the group of unitary, unimodular transformations

of the vector space C2, equipped with its standard inner-product and volume element.* In

terms of the Hermitian conjugate (complex-conjugate-transpose) †, the unitarity condition

on a linear transformation U is

U† = U−1, (133)

which is equivalent to saying that the linear transformation preserves the standard Her-

mitian scalar product. The unimodularity condition is

detU = 1, (134)

which is equivalent to saying that the linear transformation preserves the standard volume

form on C2.

Let us focus on the “defining representation” of SU(2) as just stated. Then the rep-

resentation vector space is again C2 and each element of SU(2) can be represented by a

matrix of the form

r(g) = U(θ,n) = cos θ I + i sin θ niσi, (135)

where

n = (n1, n2, n3), (n1)2 + (n2)2 + (n3)2 = 1, (136)

and

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (137)

* This way of defining SU(2) in terms of a representation provides the “defining representation”.
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are the Pauli matrices. Note that there are three free parameters in this group, corre-

sponding to θ and two free parameters defining ni.*

We can use this group representation to define a transformation group of a field theory

using the general strategy we outlined earlier. The fields are defined to be mappings

ϕ:M → C2, (138)

so we now have two charged KG fields or, equivalently, four real KG fields. You can think

of ϕ as a 2-component column vector whose entries are complex functions on spacetime.

Let U(λ) be any one parameter family of SU(2) transformations, as described above. We

assume that

U(0) = I. (139)

We define

ϕλ = U(λ)ϕ. (140)

The infinitesimal form of this transformation is

δϕ = iτϕ, (141)

where τ is a Hermitian, traceless 2× 2 matrix defined by

τ =
1

i

(
dU

dλ

)
λ=0

. (142)

Note that

δϕ† = −iϕ†τ † = −iϕ†τ. (143)

By the way, you can see that τ is traceless and Hermitian by considering our formula

for U(θ, n) above, or by simply noting that U(λ) satisfies

U†(λ)U(λ) = I, det(U(λ)) = 1 (144)

for all values of λ. Differentiation of each of these relations and evaluation at λ = 0 yields

the Hermitian (τ † = τ) and trace-free conditions, respectively. It is not hard to see that

every Hermitian tracefree matrix is a linear combination of the Pauli matrices:

τ = aiσi, (145)

where ai∗ = ai. Thus the SU(2) transformations can also be parametrized by the three

numbers ai.

* The elements of SU(2) are parametrized by a unit vector and an angle, just as are elements
of the rotation group SO(3). This can be understood in terms of the spinor representation
of the group of rotations.
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On C2 we have the following Hermitian inner product that is left invariant by the

SU(2) transformation:

(ϕ1, ϕ2) = ϕ
†
1ϕ2, (146)

(Uϕ1, Uϕ2) = (Uϕ1)†(Uϕ2)

= ϕ
†
1U
†Uϕ2

= ϕ
†
1ϕ2

= (ϕ1, ϕ2).

(147)

This allows us to build a Lagrangian

L = −
√
−g
[
gαβ(ϕ,α, ϕ,β) +m2(ϕ,ϕ)

]
(148)

that has the SU(2) transformation as an internal variational symmetry. Of course, this

Lagrangian just describes a pair of charged KG fields (or a quartet of real KG fields). To

see this, we write

ϕ =

(
ϕ1

ϕ2

)
, (149)

and then

L = −
√
−g
[
gαβ(ϕ1∗

,αϕ
1
,β + ϕ2∗

,αϕ
2
,β) +m2(ϕ1∗ϕ1 + ϕ2∗ϕ2)

]
. (150)

Representing the components of ϕ as ϕa, we have the Euler-Lagrange equations

Ea = ( −m2)ϕa = 0, (151)

which are equivalent to

E = ( −m2)ϕ = 0, (152)

in our matrix notation. Of course, the complex (or Hermitian) conjugates of these equa-

tions are also field equations.

Just as before, we can use Noether’s theorem to find the current that is conserved by

virtue of the SU(2) symmetry.

PROBLEM:

Show that for the symmetry δϕ = iτϕ the associated conserved current is given by

jα = igαβ(ϕ
†
,βτϕ− ϕ

†τϕ,β). (153)

Note that there are three independent conserved currents corresponding to the three inde-

pendent symmetry transformations. The 3 conserved charges associated with the SU(2)

symmetry are usually called “isospin” for historical reasons.
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A general version of Noether’s theorem

Let us briefly indicate, without proof, a rather general version of Noether’s theorem.

(This is sometimes called “Noether’s first theorem”.) Given all of our examples, this

theorem should not be very hard to understand.

Consider a field theory described by a set of functions ϕa, a = 1, 2, . . . ,m and a

Lagrangian

L = L(x, ϕa, ∂ϕa, . . . , ∂kϕa), (154)

such that the Euler-Lagrange equations arise via the identity

δL = Eaδϕa +Dαη
α(δϕ), (155)

where ηα(δϕ) is a linear differential operator on δϕa constructed from the fields ϕa and

their derivatives via the usual integration by parts procedure.* Suppose that there is an

infinitesimal transformation,

δϕb = F b(x, ϕa, ∂ϕa, . . . , ∂lϕa) (156)

that is a divergence symmetry:

δL = DαW
α, (157)

for some Wα locally constructed from x, ϕa, ϕa,α, etc. Then the following is a conserved

current:

jα = ηα(F )−Wα. (158)

Noether’s theorem, as it is conventionally stated – more or less as above, shows that

symmetries of the Lagrangian beget conservation laws. But the scope of this theorem

is actually significantly larger. It is possible to prove a sort of converse to the result

shown above to the effect that conservation laws for a system of Euler-Lagrange equations

necessarily arise from symmetries of the Lagrangian. It is even possible to prove theorems

that assert in a certain sense a one-to-one correspondence between conservation laws and

symmetries of the Lagrangian for a wide class of field theories (including the KG field and

its variants that have been discussed up until now). There is even more than this! But it

is time to move on. . . .

PROBLEMS

1. Derive (10) from the continuity equation.

* There is an ambiguity in the definition of ηα here which we shall ignore for now to keep
things simple. We will confront it when we study conservation laws in electromagnetism.
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2. Verify that the currents

jα(i) := (ρ(i),
~j(i)) (159)

are conserved. (If you like, you can just fix a value for i, say, i = 1 and check that jα1 is

conserved.)

3. Show that these 6 currents are conserved. (Hint: Don’t panic! This is actually the

easiest one to prove so far, since you can use

gβγDγTαβ = ϕ,α( −m2)ϕ, (160)

which we have already established.)

4. Verify that the Noether currents associated with a spacetime translation do yield the

energy-momentum tensor.

5. Consider the KG theory with m = 0. Show that the transformation

ϕλ = ϕ+ λ (161)

is a variational symmetry. Use Noether’s theorem to find the conserved current and con-

served charge.

6. Show that this Lagrangian is the sum of the Lagrangians for two (real-valued) KG fields

ϕ1 and ϕ2 with m1 = m2 and with the identification

ϕ =
1√
2

(ϕ1 + iϕ2).

7. Verify directly from the above formula for jα that

Dαj
α = 0, (162)

when the field equations for ϕ and ϕ∗ are satisfied.

8. Show that for the symmetry δϕ = iτϕ the associated conserved current is given by

jα = igαβ(ϕ
†
,βτϕ− ϕ

†τϕ,β). (163)

9. Let ϕ̂ = F (ϕ) be a variational symmetry of a Lagrangian. Show that it maps solutions

of the Euler-Lagrange equations to new solutions, that is, if ϕ is a solution, so is ϕ̂. If you

like, you can restrict your attentions to Lagrangians L(x, ϕ, ∂ϕ).
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10. As an illustration of the previous result, consider the real KG field with the double

well self-interaction potential. Show that ϕ̂ = −ϕ is a symmetry. Consider the 3 constant

solutions you found in a previous homework problem and check that the symmetry maps

solutions to solutions.

11. The double well potential can be generalized to the U(1) case by choosing V (ϕ) =

−a2|ϕ|2+b2|ϕ|4. Check that the Lagrangian with this self-interaction potential still admits

the U(1) symmetry. (Hint: this is really easy.) Plot the graph of V as a function of the

real and imaginary parts of ϕ. (Hint: you should see why this is often called the “Mexican

hat potential” for an appropriate choice for m and a. ) Find all solutions of the field

equations of the form ϕ = constant. How do these solutions transform under the U(1)

symmetry?

12. Verify the field equations, symmetries, and conservation laws discussed in this sec-

tion using the DifferentialGeometry package in Maple. You will want to read the Help

files for the sub-package “JetCalculus”, particularly those pertaining to the commands

EulerLagrange and Noether.
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