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Infinitesimal Canonical Transformations

With the notion of canonical transformations in hand, we are almost ready to explore

one of the most beautiful features of the Hamiltonian formalism. One final ingredient

needs to be developed: continuous canonical transformations and their infinitesimal form.

Consider a family of canonical transformations that depend continuously upon a pa-

rameter λ such that for some value of that parameter the transformation is the identity.

We write

qi(λ) = qi(q, p, λ), pi(λ) = pi(q, p, λ).

Let us adjust our parameter such that λ = 0 is the identity:

qi(q, p, 0) = qi, pi(q, p, 0) = pi.

As examples, think about the point transformations corresponding to rotations about an

axis, or translations along a direction (exercise).

Let us consider the transformations of the variables arising when the parameter is

nearly zero. We have, with λ << 1,

qi(λ) ≈ qi + λδqi, pi(λ) ≈ pi + λδpi,

where we have denoted the first-order changes in the canonical variables by

δqi =
∂qi(q, p, λ)

∂λ

∣∣∣∣
λ=0

, δpi =
∂pi(q, p, λ)

∂λ

∣∣∣∣
λ=0

.

We call δq and δp the infinitesimal change in q and p induced by the infinitesimal canonical

transformation.

For example, let q be the position of a particle in one dimension. Consider a transla-

tional point canonical transformation (exercise):

q(λ) = q + λ, p(λ) = p.

You can easily check that for each value of the parameter λ the change of variables

(q, p) −→ (q(λ), p(λ))
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is a canonical transformation. Here we have the rather trivial infinitesimal transformations:

δq = 1, δp = 0.

As another example, consider a particle moving in two dimensions. The phase space

variables are (x, px) and (y, py). A rotation by an angle θ is a one parameter family of

point transformations (exercise):

x(θ) = x cos θ + y sin θ

y(θ) = y cos θ − x sin θ.

px(θ) = px cos θ + py sin θ

py(θ) = py cos θ − px sin θ.

Infinitesimally we get (exercise)

δx = y, δpx = py,

δy = −x, δpy = −px.

Evidently, every continuous set of transformations will have some infinitesimal form, as

above. Conversely, since one can build up a transformation by iterating many small ones,

one can show that every family of continuous transformations is defined by its infinitesimal

form.

The requirement that a continuous transformation (q, p) −→ (q(λ), p(λ)) is canonical

puts an important set of conditions on the infinitesimal transformation defined by (δq, δp).

To first order in the variations of coordinates and momenta we have (for a time-independent

transformation)

pi(λ)q̇i(λ) = (pi + λδpi)q̇
i + λpi(

∂δqi

∂qj
q̇j +

∂δqi

∂pj
ṗj).

For any function F = F (q, p) we have

dF

dt
=
∂F

∂qi
q̇i +

∂F

∂pi
ṗi.

Writing out the canonical transformation condition to first order in the variations, and

matching up the coefficients of q̇ and ṗ, the infinitesimal canonical transformation require-

ment yields, respectively, (exercise)

δpj + pi
∂δqi

∂qj
+

1

λ

∂F

∂qj
= 0

pi
∂δqi

∂pk
+

1

λ

∂F

∂pk
= 0

(1)
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for some function F .

Here we have 2n equations for 2n + 1 unknowns (δqi, δpi, F ), so we might expect the

solution to depend upon a single arbitrary function of the canonical variables. This is in

fact the case. To see this, differentiate the first equation with respect to pk, differentiate

the second equation with respect to qj and take the difference between the two resulting

equations. This gives (exercise)

∂δpj
∂pk

+
∂δqk

∂qj
= 0. (2)

The equations (2) are of the same type as the system of equations one gets when setting

the curl of a vector field to zero. In that case you will recall this forces the vector field to

be the gradient of a function. Here the same thing works; the solution to (2) is

δqk =
∂G

∂pk
, δpj = − ∂G

∂qj
, (3)

where G = G(q, p) is any function.* We have shown that δq and δp must have this form

as a necessary condition for the infinitesimal transformation to be canonical. We now

substitute this form for the infinitesimal transformation back into our original equations.

We find that the infinitesimal canonical transformation conditions are satisfied for any G

if F is given by

F = λ(G− pi
∂G

∂pi
+ const.)

(The constant can be set to zero without loss of generality (exercise).) So, given any G =

G(q, p), the infinitesimal transformation (3) will be canonical. Since a finite transformation

can be obtained as a limit of many infinitesimal transformations, it follows that each choice

of G determines a 1-parameter family of canonical transformations,

qi → qi(λ), pi → pi(λ), qi(0) = qi, pi(0) = pi,

whose infinitesimal form is given by (3).

This result is important enough to call it a theorem:

Theorem. To every function G on phase space there is a 1-parameter family of canonical

transformations (which includes the identity), and to every 1-parameter family of canonical

transformations (including the identity) there is a function G, such that the infinitesimal

canonical transformation takes the form (3).

The function G is usually called the infinitesimal generating function or infinitesi-

mal generator of the transformation. Among friends you can call G the generator of the

transformation.

* A precise mathematical interpretation of the equations (2) is that they are the integrability
conditions for the infinitesimal canonical transformation equations (1). The integrability
conditions (2) are necessary and sufficient for (1) to have a solution.
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Orbits

A one parameter family of canonical transformations moves any given point along a

curve. Denoting the curve through the point (qi, pi) by (qi(λ), pi(λ) we can compute the

tangent vector at the point (qi, pi) on the curve by choosing this point to occur, say, when

λ = 0; the tangent vector is

(
dqi(0)

dλ
,
dpi(0)

dλ
) = (

∂G(q, p)

∂pi
,−∂G(q, p)

∂qi
).

Of course we can do this anywhere in phase space since (qi, pi) can be any point. We see

that the vector field on Γ,

(δqi, δpi) = (
∂G(q, p)

∂pi
,−∂G(q, p)

∂qi
),

determine the motion of any given point as the canonical transformation unfolds – any

given point moves along the “field lines” of the vector field. More precisely, through any

given point of phase space there passes a unique curve called the orbit of the point. The

orbit (qi(λ), pi(λ)) that passes through a chosen point (q, p) at λ = 0 is obtained by solving

the following initial value problem*

dqi(λ)

dλ
=
∂G

∂pi

dpi(λ)

dλ
= −∂G

∂qi

with initial conditions

qi(0) = qi,

pi(0) = pi.

The orbit through the point (qi, pi) is simply the set of points traced out by (qi, pi) as the

1-parameter family of canonical transformations unfolds.

As you can see, these equations are mathematically the same as Hamilton’s equations

with the role of time being played by λ and the Hamiltonian being given by G. We will

return to this similarity shortly. For now, you can use this similarity to help you visualize

the orbits of a continuous family of canonical transformations: they are obtained in the

same way as the curves swept out by dynamical evolution with Hamiltonian H = G.

As an example, suppose

G =
1

2
(q2 + p2).

* Mathematicians call this construction finding the flow of the vector field on phase space

whose (q, p) components are given by (∂G∂pi
,−∂G

∂qi
).
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The orbits of the canonical tranformation generated by G are determined by

dq

dλ
= p,

dp

dλ
= −q.

The orbit through the point (q, p) is given by (exercise)

q(λ) = q cosλ+ p sinλ, p(λ) = p cosλ− q sinλ.

The orbits are circles except at the origin, where the orbit is a single (fixed) point. Evi-

dently, the 1-parameter family of transformations are just (clockwise) rotations in the q-p

plane. Of course this family of orbits describes the time evolution of a harmonic oscillator

(with unit mass and frequency). The orbit through a given point (q0, p0) is mathemati-

cally the same as the time evolution in phase space of the oscillator with initial conditions

(q0, p0).

Important examples of infinitesimal generators

After all this formalism, it should be an illuminating relief to study a few simple

examples.

Translations

As we have seen, an infinitesimal translation of a degree of freedom q is given by

δq = 1, δp = 0.

The “orbit” traced by a point (q, p) in phase space as we vary λ is just a line parallel to

the q-axis:

q(λ) = q + λ, p(λ) = p.

You can easily check that the infinitesimal generator of this transformation is given by

G(q, p) = p.

More generally, for a system with canonical variables (qi, pi) the function

G = aipi,

where ai are constants, generates the transformation

qi(λ) = qi + ai, pi(λ) = pi.

As you have no doubt heard: “momentum is the generator of translations”.

Rotations
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Let us consider a particle moving in two dimensions. The phase space variables are

(x, px) and (y, py). A rotation by an angle θ is a one parameter family of point transfor-

mations (exercise):
x(θ) = x cos θ + y sin θ

y(θ) = y cos θ − x sin θ.

px(θ) = px cos θ + py sin θ

py(θ) = py cos θ − px sin θ.

Can you visualize the orbits? Infinitesimally we get (exercise)

δx = y, δpx = py,

δy = −x, δpy = −px.

The infinitesimal generator is (exercise)

G = ypx − xpy.

This is the angular momentum! More generally, for a particle moving in 3 dimensions it

is easy to extend this result to show that the function

Gi = (r× p)i = εij
kxipk

generates rotations about the xi coordinate axis. Better yet, the function

Gn̂ = n̂ ·M,

where n̂ is a constant unit vector and M is the canonical angular momentum,

M = r× p,

generates rotations about an axis along n̂. One way to see this is to choose your z-axis

along n̂ whence our previous 2-d result comes into play. Alternatively, as a good exercise

you can check that (using vector notation for derivatives)

δr =
∂Gn̂
∂p

= n̂× r

and

δp = −∂Gn̂
∂r

= n̂× p,

which gives the infinitesimal changes of the vectors r and p under rotations about n̂ which

we discussed during our study of symmetries and conservation laws. Thus we find the

oft-stated result: “angular momentum generates rotations.”
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Time evolution as a canonical transformation

We have seen that any function G on phase space is the infinitesimal generator of a

1-parameter family of canonical transformations

qi → qi(λ), pi → pi(λ),

where
dqi(λ)

dλ
=
∂G

∂pi
dpi(λ)

dλ
= −∂G

∂qi

.

We have already noted that these equations are mathematically identical to the Hamilton

equations of motion. Indeed, the Hamiltonian is just a function on phase space – though

it has distinguished physical significance since it is to define the motion of the system in

time. With notational changes G → H, λ → t we see that time evolution is simply a

1-parameter family of canonical tranformations. Thus we say: “the Hamiltonian is the

generator of time translations”.

We have the now arrived at the following amusing state of affairs. All continuous

canonical transformations are mathematically equivalent to dynamical systems in which

the parameter λ plays the role of time, the infinitesimal generating function plays the role

of Hamiltonian, and the orbits are the solutions of the Hamilton equations. Of course,

for a given dynamical system not all continuous families of canonical transformations are

physically representing time evolution. For a given dynamical system, there is a distin-

guished function on phase space, the Hamiltonian, and a distinguished 1-parameter family

of canonical transformations that we interpret as motion in time. All other functions on

phase space define transformations to equivalent representations of the dynamical system.

A key difference between the transformations generated by the Hamiltonian and those gen-

erated by other functions is that the time evolution canonical transformation is explicitly

time dependent. Let us explore this a bit.

For a particle with 1 degree of freedom and Hamiltonian H(q, p, t), consider the canon-

ical transformations generated by

G =
p2

2m
.

Of course, this is the Hamiltonian for free particle motion, but we are not viewing G as

the Hamiltonian at the moment, e.g., the system of interest could be an oscillator. The

canonical transformations generated by G are, however, still mathematically identical to

the motion of a free particle in one dimension. The orbit that passes through the point
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(q, p) at λ = 0 is given by (exercise)

q(λ) = q +
p

m
λ,

p(λ) = p.

Using our original canonical transformation notation this means the transformation is

q → Q = q +
p

m
λ, p→ P = p,

with inverse

q = Q− P

m
λ, p = P.

It is straightforward to check that, for each value of λ, the transformation

(q, p)←→ (Q,P )

is canonical. Indeed, we have

PQ̇−K(Q,P, t) = pq̇ −H(q, p, t) +
d

dt
(
p2λ

2m
),

where

K(Q,P, t) = H(Q− P

m
λ,P ).

In our previous study of the generating function G = p2

2m we have viewed the canonical

transformations generated by G as just some continuous transformation on phase space

depending upon the parameter λ. As mentioned before, we can also view time evolution

itself as a canonical transformation generated by the Hamiltonian. For example, free

particle dynamics would use the infinitesimal generator G as above, but now we view the

transformation as time-dependent. In detail, if we identify λ with t, the time-dependent

canonical transformation (q, p)←→ (Q,P ) is

Q = q +
p

m
t, P = p

with inverse

q = Q− P

m
t, p = P.

Note the physical meaning of the old and new variables: (Q,P ) represent the values of the

coordinates and momenta at time t given that they had values (q, p) at time t = 0. Thus

Q(t) and P (t) can be viewed as solutions of the Hamilton equations with Hamiltonian

H = P 2

2m and initial conditions Q(0) = q, P (0) = p. With H(Q,P ) = P 2

2m , the canonical

nature of the transformation can be checked by computing the change in the phase space

Lagrangian (exercise). We find (exercise)

PQ̇− P 2

2m
= pq̇ +

d

dt

(
p2t

2m

)
.
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Note that, in this way of viewing the transformation, the Hamiltonian describing motion

of the (q, p) variables in time vanishes! This is because (q, p) are playing the role of initial

data; initial conditions don’t change in time.

Symmetries and Conservation Laws

We will now explore a very beautiful formulation of the link between symmetries and

conservation laws. In fact, by investing our time in all this canonical transformation

business we are now in a position to show how this link is virtually an obvious identity!

Symmetries

We have seen that canonical transformations relate equivalent representations of a given

dynamical system. The change from one representation to another involves a redefinition

of the Hamiltonian if the transformation is time dependent. If the transformation is time

independent, the functional form of the Hamiltonian changes merely by virtue of the change

of variables alone. For simplicity, let us restrict attention to time independent canonical

transformations. While, in general, such a transformation will change the functional form

of the Hamiltonian (just as the functional form of a function f(x, y) will change when

passing to polar coordinates), particular Hamiltonians may admit special transformations

which happen to leave their functional form unchanged (just as a function f(x, y) depending

only upon the distance from the origin will be unchanged by a rotation about the origin).

Let us suppose we have a Hamiltonian which admits such a canonical transformation, i.e.,

K(Q,P, t) ≡ H(q(Q,P, t), p(Q,P, t), t) = H(Q,P, t).

Such a canonical transformation is called a symmetry of the dynamical system since the

Hamiltonian, which governs the behavior of the system, is insensitive to the transformation.

A simple example of a symmetry is the translation of a free particle in one dimension

(Hamiltonian H(q, p, t) = p2

2m):

Q = q + λ, P = p.

We have (exercise)

K(Q,P, t) =
[p(Q,P, t)]2

2m
=
P 2

2m
= H(Q,P, t).

Another way to display the symmetry mathematically is that under the replacement q →
q + λ, p→ p, the Hamiltonian doesn’t change:

H(q + λ, p, t) =
p2

2m
= H(q, p, t).

9



Infinitesimal Canonical Transformations. Symmetries and Conservation Laws.

To see what it means for a Hamiltonian not to be invariant, consider a particle moving

in the plane governed by a Hamiltonian

H =
1

2m
(p2
x + p2

y) + αx2 + βy.

Evidently, this particle sees a harmonic oscillator type of interaction in the x direction and

a constant force interaction along the y-direction. Physically, the different interactions

distinguish the x and y directions – for this reason there is no rotational symmetry. Indeed,

you can easily check that a rotation in the plane changes the form of the Hamiltonian.

The kinetic energy is rotationally invariant, but under a rotation by an angle α,

x→ x cosα+ y sinα, y → y cosα− x sinα,

the potential energy

V (x, y) = αx2+βy −→ α(x2 cos2 α+2xy sinα cosα+y2 sin2 α)+β(y cosα−x sinα) 6= V (x, y).

The transformed potential – and the correpsondingly transformed Hamiltonian — de-

scribes the same system in the rotated reference frame. The value of the Hamiltonian at

corresponding points in the two reference frames is the same, but that does not mean the

Hamiltonian has rotational symmetry. For the system to admit a symmetry the Hamil-

tonian should be completely insensitive to the transformation - it should “look the same”

after the transformation.

On the other hand, consider a particle moving in a central potential in the plane. The

Hamiltonian is of the form

H(~r, ~p) =
p2

2m
+ V (r), r =

√
x2 + y2,

e.g.,

V = α(x2 + y2).

Under a point canonical transformation the position and momentum rotate in the usual

vectorial way:

~r → ~r ′ = R(α)~r, ~p→ ~p ′ = R(α)~p.

Here we have denoted the 2×2 matrix representing a rotation by an angle α by R(α). The

Hamiltonian only depends upon the lengths of these vectors, (r, p), which are rotationally

invariant:

r′ = r, p′ = p.

Thus, for a particle moving in a central potential

H(~r ′, ~p ′) = H(~r, ~p),
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and the rotational point canonical transformation is a symmetry of Hamiltonians of this

form.

Now, given a Hamiltonian H(q, p, t), suppose that there is a 1-parameter family of

canonical transformations

(qi, pi)→ (qi(λ), pi(λ))

which is a symmetry of the Hamiltonian:

H(q(λ), p(λ)) = H(q, p).

This implies that the infinitesimal change in H due to the transformation vanishes:

d

dλ
H(q(λ), p(λ)) = 0.

Another way to write this expression is

δH =
∂H

∂qi
δqi +

∂H

∂pi
δpi = 0,

where δqi and δpi are the infinitesimal changes in the canonical variables due to the canon-

ical transformations. Denoting the generating function by G, we have

δH = [H,G] = 0.

For example, in our translational example above, we have

H(q, p, t) =
p2

2m
, G = p,

and

δH = [H,G] =
∂H

∂q

∂G

∂p
− ∂H

∂p

∂G

∂q
= 0.

As a good exercise you should check that in our rotational example, with

G = xpy − ypx,

we get

δH = [
p2

2m
+ U(r), G] = 0.

Conservation Laws

A conserved quantity is any function on the phase space which does not change in time

as one evolves the system according to Hamilton’s equations. Let me belabor this. The

time variation of some physical quantity F (q, p) arises by (i) solving Hamilton’s equations
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to get a curve (qi(t), pi(t)) in phase space, and (ii) evaluating F (q, p) on the curve to get

F (t) ≡ F (q(t), p(t)). The time rate of change of F for the given curve in phase space is

dF (t)

dt
=
∂F (q, p)

∂qi

∣∣∣∣
q(t),p(t)

q̇i(t) + ∂F (q, p)

∣∣∣∣
q(t),p(t)

ṗi = [F (q, p), H]

∣∣∣∣
q(t),p(t)

.

Thus, a quantity F = F (q, p) is conserved if

dF

dt
= [F,H] = 0.

But we have just seen that a continuous symmetry implies the Hamiltonian has a

vanishing PB with the generator G of the symmetry. Thus the symmetry condition imme-

diately implies conservation of the generator:

Ġ = [G,H] = −[H,G] = 0.

As you can see, in the Hamiltonian formulation of mechanics the existence of a symmetry:

[H,G] = 0

is the same as the existence of a conservation law

[G,H] = 0

because of the identity [G,H] = −[H,G]. In this sense we can say that, in the Hamiltonian

formulation of mechanics, symmetries and conservation laws are identified—they are “two

sides of the same coin”.

Theorem. Given a Hamiltonian system (Γ, H), the infinitesimal generating function

G: Γ→ R of a continuous symmetry of H is conserved by the time evolution generated by

H. Every conserved quantity for a Hamiltonian system generates a continuous symmetry

of that system.

Simple examples of this result are as follows.

Translational symmetry and conservation of momentum

Suppose that the Hamiltonian does not depend upon a given canonical variable, say,

q1:
∂H

∂q1
= 0.

Then, clearly, under the canonical transformation

q1 = q1 + λ,
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(all other variables unchanged) we have H being unchanged:

H(q1 + λ, q2, . . . , p1, p2, . . . , t) = H(q1, q2, . . . , p1, p2, . . . , t).

Put differently, we have (exercise)

[H, p1] = 0.

But this means that, using Hamilton’s equations (exercise),

ṗ1 = 0.

Thus translational symmetry in a canonical variable implies that its associated momentum

is conserved.

Note: the “coordinate” being translated may have a very different physical meaning than

the familiar rectilinear coordinate of a particle. The conserved quantity may therefore have

a different physical interpretation than what we usually call “momentum”.

Rotational Symmetry and Conservation of Angular Momentum

Suppose a particle, with position r and canonical momentum p moves in a potential

that is rotationally invariant, i.e.,

H =
p2

2m
+ U(r).

Then it is easy to see that the Hamiltonian is rotationally invariant under the rotational

canonical transformation (good exercise). This means that the PB of H with any com-

ponent of the angular momentum must vanish, i.e., (canonical) angular momentum is

conserved. It is of course frequently stated in the literature that rotational symmetry

implies conservation of angular momentum. In the Hamiltonian formulation, rotational

symmetry is conservation of angular momentum!

Time translation symmetry and conservation of energy

Suppose the Hamiltonian of a system doesn’t depend upon time:

H = H(q, p).

Obviously, as a function on phase space H does not vary in time. This implies that the

value of the Hamiltonian will not change as one moves along any curve in phase space

satisfying Hamilton’s equations, i.e., H is conserved. One often writes

∂H

∂t
= 0⇐⇒ dH

dt
= 0
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In formulas, the change in the Hamiltonian under time evolution is:

dH

dt
= [H,H] = 0.

Thus if the Hamiltonian has time translation as a symmetry this is the same as saying

that it is a constant of the motion.

We finish this discussion with an important fact: If two functions f(q, p) and g(q, p)

are conserved, then so is their Poisson bracket [f, g]. To see this we use the Jacobi identity.

Let H be the Hamiltonian, we have

d[f, g]

dt
= [[f, g], H] = −[[g,H], f ]− [[H, f ], g].

By assumption f and g are conserved, so that their PBs with H must vanish, and we get

our result. This result can be useful for finding new conserved quantities. But it is possible

that the PB of two known conservation laws results in a constant function, e.g., 0, which

is certainly conserved but trivially so (e.g., consider a system with a conserved momentum

and a conserved Hamiltonian – what does the PB give you?). Sometimes the PB of two

known conservation laws results in a (constant multiple of another) known conservation

law. But, if you have two (or more) conservation laws you should always take all their PBs

to see if there are additional conserved quantities.

Symmetry groups

Let’s summarize our discussion thus far. We have seen that a continuous canonical

transformation is generated by a function G(q, p) – the infinitesimal generator – via

δqi = [qi, G], δpi = [pi, G].

If the Hamiltonian H is unchanged by this transformation – G generates a symmetry of

the dynamical system – then

[H,G] = 0,

The Hamilton equations then imply

Ġ = [G,H] = −[H,G] = 0.

Thus the infinitesimal generator of a symmetry is a conserved quantity. Conversely, if a

function G(q, p) is conserved then it generates a symmetry of the Hamiltonian.

We have also seen that (because of the Jacobi identity) given two conserved quantities

f(q, p) and g(q, p) (and hence two symmetries) their Poisson bracket [f, g] is also conserved

(and is also generator of a symmetry). Now imagine we have (somehow) found all the
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conserved quantities, or at least we have found a set of conserved quantities whose PBs

yield no new conserved quantities. In this case an important mathematical structure

emerges which has proved to be of no small significance in physics. This structure is that

of a Lie Group. Lie groups arise in a number of contexts. For us, their significance is that

they characterize the symmetry structure of a given system. I would like to explore this a

little bit.

Recall that a group is a set G, with elements (g1, g2, . . .) ∈ G, equipped with a binary

operation which takes any pair of elements g1 and g2 and defines a third element g1 ·g2 ∈ G.

This binary operation is called (perhaps misleadingly) “group multiplication” or “group

product”. This product must be associative:

(g1 · g2) · g3 = g1 · (g2 · g3) ≡ g1 · g2 · g3.

It is also required that there is a distinguished element e ∈ G, called the identity, which

satisfies for any g ∈ G
e · g = g · e = g.

Finally, for G to be a group every element g ∈ G must have an “inverse” g−1 ∈ G which

satisfies

g−1g = gg−1 = e.

In physics, groups usually arise as sets of transformations. As an example, consider

the group G of rotations of the x-y plane about the origin. Each rotation is specified by

an angle θ. Thus G is a 1-d space (in fact it is a circle). The group multiplication takes

two rotations, specified by θ1 and θ2 and makes a third rotation by θ1 + θ2. Clearly this

“product” is associative (and commutative in this example). The identity transformation

is the rotation by the angle θ = 0. The inverse of a rotation by θ is a rotation by −θ.
This example has the group elements labeled by a continuously variable parameter (the

angle). Groups whose elements are labeled by continuous parameters are called Lie Groups

(named after Sophus Lie who pioneered the concept in the late 1800s).

As another example, let us consider the (Lie) group of all rotations in 3-d space about

some chosen origin. As you know, a rotation is characterized by an axis (2 parameters)

and an angle (1 parameters). Thus the set of rotations is a 3-d space, a 3-d Lie group.

A group element can be characterized by a 3× 3 matrix R, which transforms a (column)

vector v to the rotated vector Rv. For example, a rotation by θ about the z axis is given

by

Rz(θ) =

(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
.

Similarly,

Rx(θ) =

(
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
,
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Ry(θ) =

(
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

)
.

These 3 matrices are examples of orthogonal transformations, which are linear transfor-

mations satisfying RT = R−1. Rotations are represented by orthogonal transformations

because rotations preserve the dot product. In matrix notation, the dot product of two

vectors v and w is vTw = wT v. Under a rotation R this dot product must not change

vTw = (Rv)T (Rw) = vTRTRw =⇒ RRT = I.

This implies that det(R) = ±1. Since, by a choice of axes any single rotation can be put

into the form of, say, Rz, and since Rz has unit determinant, we see that rotations are

orthogonal transformations of unit determinant. It can be shown, conversely, that every

orthogonal transformation of unit determinant is a rotation (about some axis by some

angle). Therefore the group of rotations can be viewed as the set of such matrices with

the group product being the matrix product, which is associative. It is easy to see that

the identity is such a matrix. And, of course, given R, RT is also such a matrix and is the

inverse to R. Thus the set of orthogonal matrices with unit determinant is a group, called

SO(3); it is the rotation group.*

The rotation group in the plane can be obtained as a subgroup of SO(3); its elements

are simply Rz(θ). This group is called SO(2). Note that the order of rotations in 2-d does

not matter:

Rz(θ1)Rz(θ2) = Rz(θ1 + θ2) = Rz(θ2)Rz(θ1).

We say that SO(2) is a commutative or Abelian group. In 3-d the order of rotations does

matter. For example, you can check that Rz(θ)Rx(φ) 6= Rx(φ)Rz(θ).

What does all this have to do with symmetries and conservation laws? The set of

canonical transformations which leaves the Hamiltonian unchanged – the symmetries –

forms a group (usually labeled by continuous parameters, hence a Lie group). This is

the symmetry group of the dynamical system. Let us write the elements of this group as

φ1, φ2, . . .. The element φ is a canonical transformation taking a point Zα = (qi, pi) in

phase space to the point

Z̃α = φα(Z),

and such that

H(φ(Z)) = H(Z).

Thus φ is a coordinate transformation on phase space which (i) only changes the form of

the phase space Lagrangian by addition of a time derivative, (ii) does not change H. The

* In general, the set of orthogonal transformations of an n dimensional vector space is a
group called O(n). The set of orthogonal transformation with unit determinant is also a
group and is called SO(n).
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group product is composition of the transformations:

(φ1 · φ2)(Z) = φ1(φ2(Z)).

Evidently the composition of two symmetries is another symmetry (exercise). The identity

element e is the identity transformation:

e(Z) = Z,

which is clearly a symmetry. Since canonical transformations are invertible, the inverse

transformation is used for the group inverse:

φ−1(φ(Z)) = Z.

As a nice exercise you can check that if φ is a symmetry, then so is φ−1. Thus the set

of symmetries of a dynamical system form a group. Often times one can find a subset of

all possible symmetries which forms a group by itself, this is a subgroup of the symmetry

group.

Example: Rotational symmetry of central force problems

Let us consider a particle moving in a central force field. The Hamiltonian is, as usual,

H =
p2

2m
+ V (r).

Here we can view position and momentum as column vectors ~r, ~p and

p2 = (~p)T ~p, r2 = (~r)T~r.

We already know that rotations act on this system as a point canonical transformation.

Let R ∈ SO(3) be the rotation of interest, the transformation is

~r → R~r, ~p→ R~p.

We know that this transformation will not change p2 and r2. Thus the Hamiltonian is

invariant under rotations. We say that SO(3) is a symmetry (sub)group for central force

problems.

Note however that here SO(3) is being used in a slightly different way than in our

previous example of 3-d rotations. Here we are using elements of SO(3) to perform trans-

formations on a 6-d space. Nonetheless, the transformations on the 6-d space completely

“mimic” the transformations we used to define SO(3). In particular, to every element of

SO(3) there is defined a corresponding transformation on the phase space. The products
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of two transformations on phase space corresponds to the product of the two transforma-

tions of SO(3). We say that we are using a different representation of SO(3). In general,

any time you have a group G and you find a set of transformations on some space which

corresponds to the elements of G and whose composition corresponds to the group product

we say we have a representations of G. In mechanics the set of symmetries always is a

representation of some group, which we call the symmetry group of the dynamical system.

Let us note that the complete symmetry group for central force problems is larger than

SO(3). First of all, we know that
dH

dt
= 0.

This means that if we replace ~r and ~p with any of the 1-parameter family ~r(λ), ~p(λ), which

are solutions of the Hamilton equations with ~r(0) = ~r and ~p(0) = ~p, the λ dependence will

drop out – we then get a 1-parameter family of additional symmetries. There may be even

more symmetries, depending upon the form of V (r); more on this later. As an example of

this time translation symmetry. Consider a harmonic oscillator-type Hamiltonian:

H(q, p) =
1

2
p2 +

1

2
q2.

H generates the canonical transformations

q(λ) = q cosλ+ p sinλ, p(λ) = p cosλ− q sinλ.

You can easily check that

H(q(λ), p(λ)) =
1

2
(p cosλ− q sinλ)2 +

1

2
(q cosλ+ p sinλ)2 = H(q, p).

The symmetry group generated by H is the group of rotations of the phase plane, so it is

SO(2), although, of course, the physical meaning of the transformations is different than

the rotations in the x-y plane.

Symmetry algebras

If the symmetry (sub)group of a dynamical system is a Lie group, that is, if the symme-

tries are continuous transformations, then we can consider infinitesimal transformations.

The infinitesimal transformations lead to an infinitesimal analog of the Lie Group: the

Lie algebra. Rather trying to explain this concept in all generality, let us focus on a key

example and then have a look at symmetries.

Let us return to rotations in 3-d. We have displayed 3 (of the infinity of) rotation

matrices, corresponding to rotations about the x, y, and z axes. Let us expand these to

first order to get the infinitesimal forms:
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Rx(θ) =

(
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
=

(
1 0 0
0 1 −θ
0 θ 1

)
+ . . . ,

Ry(θ) =

(
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

)
=

(
1 0 θ
0 1 0
−θ 0 1

)
+ . . . ,

Rz(θ) =

(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
=

(
1 −θ 0
θ 1 0
0 0 1

)
+ . . . .

Evidently for each of i = (1, 2, 3) = (x, y, z) we have

Ri(θ) = I + θGi + . . . ,

where

Gx =

(
0 0 0
0 0 −1
0 1 0

)
,

Gy =

(
0 0 1
0 0 0
−1 0 0

)
,

Gz =

(
0 −1 0
1 0 0
0 0 0

)
.

The Gi are called the infinitesimal generators of the rotation (about x, y and z) because

they define the infinitesimal rotation and, by iteration, any finite rotation as well. Note

that the generators are anti-symmetric matrices. This is easy to understand. Any rotation

R is an orthogonal matrix:

I = RRT .

Infinitesimally we have

I = (I + θG+ . . .)T (I + θG+ . . .) = I + θ(GT +G) +O(θ2) =⇒ GT = −G.

It is easy to see that any anti-symmetric matrix can be expressed as a linear combination

of the Gi, so the three infinitesimal infinitesimal generators exhibited above can be used

to define any rotation.

There is an important relation among the generators:

[Gi, Gj ] = εijkGk,

which you can easily check by explicit computation. These commutation relations charac-

terize the product of two rotations at the infinitesimal level. Indeed, consider the commu-

tator of two infinitesimal rotations:

Rx(α)Ry(β)−Ry(β)Rx(α) = (I + αGx + . . .)(I + βGy + . . .)− (I + βGy + . . .)(I + αGx + . . .)

= αβ[Gx, Gy] + . . . .
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Another way to look at this is to consider the infinitesimal change in the position vector

under two successive rotations. Writing

δi~r = Gi~r,

we have

~r → Ri(θ)~r = ~r + θδi~r + . . . ,

and we have (exercise)

δiδj~r − δjδi~r = [Gi, Gj ]~r = εijkGk~r.

Although we shall not prove it here, the commutator of the generators provides the

infinitesimal form of the group product rule. In particular, the fact that the commutator of

two generators gives another generator is the group “closure” property. As you may know,

the commutator of linear operators satisfies the Jacobi identity. This is the infinitesimal

form of the associativity of the group product. It is a fundamental result of Lie group theory

that the infinitesimal generators and their commutation relations completely characterize

the Lie group – one can (with a few technical subtleties) reconstruct the group from its

infinitesimal generators. This infinitesimal form of the group is known as a Lie algebra.

In general, a Lie algebra is a vector space of generators (here the space of anti-symmetric

matrices) along with an anti-symmetric “product” or “bracket”, which takes any two

elements of the vector space and produces another such element, and which satisfies the

Jacobi identity* (here the commutator). Here we have obtained the Lie algebra of SO(3),

usually denoted by so(3). In general, if we pick a basis Gi for the vector space of generators,

then the Lie bracket must be of the form

[Gi, Gj ] = CkijGk.

The constants Ckij are called the structure constants of the Lie algebra. Roughly speaking,

the structure constants completely characterize the algebra (and hence the group). We see

that for rotations the structure constants of so(3) are Ckij = εij
k.

Let us now return to the group of symmetries of a Hamiltonian dynamical system. We

have briefly sketched the structure of this Lie group. Let us now uncover the Lie algebra.

Denoting again the points in phase space by Zα = (qi, pi), the infinitesimal transformation

corresponding to some continuous symmetry Zα → Zα(λ) is given by

Zα → Zα + λδZα + . . . ,

* Note that the Jacobi identity implies that, in general, Lie algebras are non-associative
algebras.
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where

δZα = [Zα, G],

and G is the infinitesimal generating function for the symmetry. We have seen that the

PB of two symmetry generators is again a symmetry generator. Assuming we have found

all symmetry generators (or at least a subset which closes under the PB) we have again

constructed a Lie algebra – the Lie algebra of symmetries. Indeed, the vector space is the

vector space of symmetry generating functions (clearly one can add symmetry generating

functions and multiply with constants to get again a symmetry generating function). The

Lie algebra bracket is the PB, which does satisfy the Jacobi identity.

Let us return to our example of a particle moving in a central potential. We have seen

that the rotational invariance of the Hamiltonian means that the infinitesimal generators

of the symmetry – the angular momenta:

~L = ~r × ~p,

are conserved. Since these generate a symmetry (Lie) group, we can ask what is the Lie

algebra? It is easy to check that the components of the angular momentum satisfy the

following PB relations (exericse)

[Li, Lj ] = εijkLk.

You might have guessed this result. We have already seen that the rotational symmetry

transformations of the Hamiltonian system provides a representation of SO(3). Likewise,

the infinitesimal symmetry transformations provide a representation of Lie algebra so(3).*

The set of all conserved quantities for a Hamiltonian dynamical system form a (rep-

resentation of a) Lie algebra, as outlined above. It is almost always easier to characterize

the symmetries of a Hamiltonian system in terms of Lie algebras instead of Lie groups.

A basic job for any serious classical (or quantum) mechanic is to find the Lie algebra of

symmetries of the dynamical system of interest. This amounts to finding a basis for the

vector space of conserved quantities, Gi, and computing their PBs to find the structure

constants:

[Gi, Gj ] = CkijGk.

The symmetry algebra of the Kepler problem

Let us consider the relative motion Kepler problem. The conservation laws for the

(relative motion) Kepler problem include the energy H, angular momentum ~L and Laplace-

Runge-Lenz (LRL) vector ~A. What symmetries do they generate? Well, we have of course

time translation and rotations, but what of the LRL vector?

* As mentioned previously, the complete symmetry group of the system is bigger than SO(3),
likewise the infinitesimal symmetry algebra is bigger than so(3). The rotations provide a
subgroup/subalgebra.
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To get a manageable answer to this question let us get rid of the time translation

symmetry as follows. First, we note that since both ~L and ~A have vanishing PBs with H,

the transformations they generate will not change the value of the energy, that is, they will

generate transformations in phase space which move among phase space points all having

the same value of H. Focus attention on the subset of phase space which has a given fixed

value E for the Hamiltonian. For the moment, let us focus on the bound states where

E < 0. To identify the Lie algebra of symmetries it is convenient to work with slightly

modified conserved quantities. Define

~D =
~A√

2m|E|
.

A straightforward (but tedious) computation of PBs then yields:

[Di, Lj ] = εijkDk,

and

[Di, Dj ] = εijkLk.

The first of these results is easy enough to understand. Recall that Li generates infinites-

imal rotations about the xi axis. The PB [Di, Lj ] is then the infinitesimal change of the

ith component of ~D under a rotation about xj . Recall that for any vector, say, ~D, its

infinitesimal change under a rotation about an axis n̂ is given by

δn ~D = n̂× ~D.

This means (exercise)

δnDx = nyDz − nzDy
and so forth (cyclic permutations). You can then easily see that, choosing the rotation

axis to be x, y or z:

(δj ~D)i = εijkDk,

in accord with the [D,L] PB. You can also understand the PB

[Li, Lj ] = εijkLk

in the same fashion (exercise). Indeed, for any vector with Cartesian components Vi
constructed solely from ~r and ~p using dot and cross products (no other “fixed vectors”,

e.g., a prescribed electric field) one will have

[Vi, Lj ] = εijkVk.

To summarize, the symmetry algebra of bound state motion with a given energy is

given by the PBs of 6 generators ~L and ~D:

[Li, Lj ] = εijkLk, [Di, Lj ] = εijkDk, [Di, Dj ] = εijkLk.
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It is not too hard to verify that this algebra is providing a representation of so(4), the Lie

algebra of SO(4) (orthogonal 4×4 matrices with unit determinant). Indeed, just as we did

with so(3) you can see that so(4) can be identified with the algebra of antisymmetric 4×4

matrices. Every such matrix is a linear combination of 6 basic matrices which correspond

to infinitesimal rotations in a single xi – xj plane, i, j = 1, 2, 3, 4. Here then we have a

representation of SO(4) on the 6-d phase space of the (relative) Kepler problem. Similar

computations uncover the symmetry algebra in the cases E ≥ 0 (see the text).

The SO(4) symmetry group of the (reduced) Kepler problem has been much studied.

In the quantum theory of a hydrogenic atom the same algebra appears (now represented

via Hermitian operators and commutators). Just using the fact that the quantum versions

of ~L and ~D satisfy the so(4) algebra one can completely deduce the spectrum of such atoms

without solving any differential equations!

23


