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Relevant Sections in Text: §8.5, 8.6, 9.1–9.5

Hamilton’s principle and Hamilton’s equations

You will recall that the Lagrangian formulation of mechanics arises from a variational

principle, known (somewhat confusingly at this point) as Hamilton’s principle. Hamilton’s

principle determines physically allowed curves in configuration space. Physically allowed

curves are critical points of the action integral:

S[q] =

∫ t1

t0
L(q(t),

dq(t)

dt
, t) dt,

with fixed endpoint conditions. This means that, if q̂i(t) defines the physical curve, then

for any other path qi(t), where

qi(t) = q̂i(t) + δqi(t), δqi(t0) = δqi(t1) = 0,

we have that S[q]−S[q̂] is zero to first order in the variations δq. We saw that the critical

curves in configuration space satisfied the Euler-Lagrange (EL) equations. Now we have

introduced the Hamiltonian form of the equations of motion. The Hamilton equations de-

termine curves in momentum phase space. Since the Hamilton equations and EL equations

are equivalent (when viewed as differential equations for curves in configurations space)

it is natural to wonder if there is a variational principle governing Hamilton’s equations.

There is such a variational principle – it is the Hamilton’s principle – and it is defined as

follows.

We consider curves (qi(t), pi(t)) in momentum phase space and define the phase space

action integral S[q, p] via

S[q, p] =

∫ t1

t0
(piq̇

i −H(q, p, t)) dt.

As usual, it is understood that all quantities in the integral are evaluated on a curve in

momentum phase space:

qi = qi(t), pi = pi(t), q̇i =
dqi(t)

dt
.

You can easily see that on paths satisfying the Hamilton equations the numerical value of S

is the same as the usual action used in the Lagrangian formulation. This is because piq̇
i−

H(q, p, t) is the usual Lagrangian in this case (exercise). On the other hand, previously we
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viewed the action as a functional of curves in the (n-dimensional) configuration space and

it was these curves which are varied in the variational principle. Now we are considering

curves in the (2n-dimensional) phase space in the variational principle. As we evaluate the

phase space action on this or that curve, the curves will not in general satisfy the Hamilton

equations (the critical point condition – as we shall see) and hence the relation between

momentum and velocity does not necessarily hold on the curves in phase space. Thus

the phase space variational principle is distinct from the configuration space variational

principle.

Let us now consider the conditions placed upon the phase space path by demanding

that it provides a critical point of S[q, p]. We suppose that the path qi(t), pi(t) is a critical

point of the action integral. This means that if we substitute

qi(t)→ qi(t) + δqi(t),

pi(t)→ pi(t) + δpi(t),

the first order change in the action integral, δS, with respect to δq and δp vanishes. This

condition is (exercise)

0 = δS =

∫ t1

t0

(
δpiq̇

i + pi
˙δqi − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
dt = 0. ∀ δqi, δpi.

If we integrate by parts in the second term, and demand that

δqi(t1) = 0 = δqi(t2),

then we get

0 =

∫ t1

t0

[
(q̇i − ∂H

∂pi
)δpi − (ṗi +

∂H

∂qi
)δqi

]
dt.

Because δq and δp are arbitrary in the domain of integration, each of the terms must sep-

arately vanish, thus we obtain Hamilton’s equations by a variational principle. Note that

the coordinates are fixed at the endpoints of the allowed paths (just as in the Lagrangian

variational principle), but the momenta are free at the endpoints.

Canonical Coordinates and Momenta

To build the Hamilton equations for a given dynamical system you need two ingredi-

ents. The first is pretty obvious – you need the Hamiltonian. This is a function of 2n

variables (and possibly the time), where n is the number of degrees of freedom. But I if

I just hand you a function of, say, 2 variables (for a system with one degree of freedom),

you still need another piece of information before you can write the equations of motion.

You need to know which variable is “q ”and which variable is “p”. The reason for this
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is that minus sign that appears in the Hamilton equations - which distinguishes the q

and p variables. The Poisson bracket – which can be used to construct the equations of

motion for any observable – knows about this minus sign as well, as you can see from

its definition. We shall see that there is a wide variety of choices for coordinates and

momenta which permit the Hamiltonian description. Any such system of coordinates on

phase is called “canonical”, with the q’s called “canonical coordinates” and the p’s called

the corresponding – or “conjugate” – “canonical momenta”.

The defining property of canonical coordinates and momenta is that they satisfy the

fundamental Poisson bracket relations

[qi, qj ] = 0 = [pi, pj ], [qi, pj ] = δij .

You can easily check that it is precisely these relations which guarantee that the Hamilton

equations can be expressed as:

q̇i = [qi, H], ṗi = [pi, H].

A set of coordinates on phase space satisfies these relations if and only if they define

canonical coordinates and momenta.

Given one set of canonical coordinates and momenta, it is easy to construct many

others. For example, consider a particle moving in 1-d described with canonical phase

space variables (x, p), as usual. It is not too hard to check that the following are also

canonical variables:

Q = ex, P = e−xp.

To see this, just check that

[Q,P ] = 1.

(Why don’t we have to check [Q,Q] = 0 = [P, P ] ?) Let us see how the Hamilton equations

look in these new variables. Suppose the Hamiltonian is, say, that of a harmonic oscillator,

H(x, p) =
p2

2m
+

1

2
kx2,

with equations of motion

ẋ =
p

m
, ṗ = −kx.

To express the Hamiltonian in terms of the new variables we need to invert the coordinate

transformation:

x = lnQ, p = QP.

The new Hamiltonian, let’s call it H̃, is given by

H̃ =
Q2P 2

2m
+

1

2
k(lnQ)2.
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Here’s the punchline: because we are using canonical variables, we can use the same set of

Hamilton’s equations to compute the equations of motion. Thus:

Q̇ =
∂H̃

∂P
=
Q2P

m
,

Ṗ = −∂H̃
∂Q

= −QP
2

m
− k lnQ

Q
.

As you can see, while the formula for computing the equations is the same as always, the

result can be very different depending upon the complexity of the change of variables. It is

worth checking that the two systems of equations for the harmonic oscillator are equivalent.

You can do that using the original definitions of (Q,P ) in terms of (x, p) – I leave it as

an exercise. The point is that while the equations turn out differently they are obtained

always using the same prescription: Hamilton’s equations for canonical coordinates and

momenta.

A change of variables on phase space which maps one set of canonical variables into

another (such as we just explored) is called a canonical transformation.

More about Canonical Transformations

You will recall that the Lagrangian formulation of mechanics allowed for a large class

of generalized coordinates. In particular, let qi be a system of coordinates so that the EL

equations of the Lagrangian L(q, q̇, t) give the desired equations of motion. Then if

q′i = q′i(q, t)

is any other system of coordinates, the Lagrangian

L′ = L(q(q′, t), q̇(q′, q̇′, t), t),

where

q̇i(q′, q̇′, t) =
∂qi

∂q′j
q̇′j

will give, by the same EL equation formulas, the correct — i.e., equivalent — equations

in the new variables. This kind of transformation, in which the new coordinates are

functions of the old coordinates and time only, is called a point transformation. The fact

that the same EL formula works in all coordinates related by a point transformation can

be understood from the variational principle point of view. The fact that a configuration

space curve is a critical point will not depend upon the choice of generalized coordinates

used to compute the action integral.

More general changes of variables in which the new coordinates involve the old velocities

are not allowed; the EL equations will, in general, be wrong. This stems from the fact

4



Phase Space Variational Principle. Canonical Transformations.

that the variational principle is dealing with curves in configuration space only. As a very

simple example of this, consider a free particle with Lagrangian in 1-d

L =
1

2
mẋ2,

and EL equations

mẍ = 0.

Let us define a new variable q via

q = ẋ,

which is not a point transformation. The new Lagrangian, L̃ is given by

L̃ =
1

2
mq2.

The EL equations from L̃ are

mq = 0,

which are clearly not equivalent to mẍ = 0.

The Hamilton equations, since they come from a variational principle in phase space,

allow for a much wider class of allowed coordinate transformations, the canonical transfor-

mations, and this feature is at the heart of many of the powerful aspects of the Hamilto-

nian formalism. For example, one can view time evolution as a canonical transformation.

The link between symmetries and conservation laws is given its fullest expression via

canonical transformations. Canonical transformations are at the heart of a very elegant

form of dynamics: the Hamilton-Jacobi formalism (which provide the classical analog of

the Schrödinger equation). Canonical transformations are the classical analog of unitary

transformations in quantum mechanics and give a classical interpretation of the different

quantum mechanical representations.

The idea of canonical transformations is that one can perform point transformations in

phase space, in which the coordinates and momenta get mixed up. However, the key feature

that has to be dealt with is that the phase space Lagrangian L is not just any function of

the phase space variables and their time derivatives. The phase space Lagrangian has a

special form:

L = piq̇
i −H(q, p, t).

We thus may only consider point transformations in phase space which preserve this form

up to a total time derivative. This turns out to be a very large class of transformations

compared to the point transformations of Lagrangian mechanics.

Example: Point transformations in configuration space

We now consider all invertible transformations

Qi = Qi(q, p, t)
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Pi = Pi(q, p, t)

such that the original Hamilton equations, when expressed in terms of the new variables

(Q,P ), become

Q̇i =
∂K

∂Pi

Ṗi = − ∂K
∂Qi

for some choice of K = K(Q,P, t). If we can do this, then we say that the transformation

(q, p) ↔ (Q,P ) is a canonical transformation since it preserves the canonical form of the

equations of motion. From the point of view of the Hamiltonian formulation of mechanics,

any set of variables for which the equations of motion are in Hamiltonian form are equally

viable for the description of the system.

Let us look at a simple example: time-independent point transformations for a system

with one degree of freedom. Let f(q) be a function with inverse g(q):

f(g(q)) = q, g(f(q)) = q.

Given a phase space (q, p) and Hamiltonian H(q, p, t), the following transformation is a

canonical transformation

Q = f(q), P =
dg(Q)

dQ

∣∣∣∣
Q=f(q)

p

with new Hamiltonian

K(Q,P, t) = H(g(Q),
df(q)

dq

∣∣∣∣
q=g(Q)

P, t).

To see this, we compute (nice exercise)

Q̇ =
df(q)

dq
q̇ =

df(q)

dq

∂H

∂p
=
∂K

∂P
,

and

Ṗ =
d2g(Q)

dQ2

∣∣∣∣
Q=f(q)

df(q)

dq
q̇p+

dg(Q)

dQ

∣∣∣∣
Q=f(q)

ṗ

=
d2g(Q)

dQ2

∣∣∣∣
Q=f(q)

df(q)

dq

∂H

∂p
p− dg(Q)

dQ

∣∣∣∣
Q=f(q)

∂H

∂q

= −∂K
∂Q

,

where I used the identity
d2g(Q)

dQ2

df(q)

dq
= −d

2f

dq2

dg

dQ
,
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which comes from differentiating the relation expressing that f and g are inverses.

As an exercise you can see that our previous example of a canonical transformation

(in the context of our discussion of canonical coordinates and momenta) is a special case

of this one. Indeed, it is possible to show that a transformation is canonical if and only if

it preserves the fundamental Poisson bracket relations.

Example: Interchanging coordinates and momenta

Here is another, more amusing example. Define

Q = p, P = −q.

Given H(q, p, t), let

K(Q,P, t) = H(−P,Q, t).

For example, suppose

H =
p2

2m
+ V (q)

so that

K =
Q2

2m
+ V (−P ).

We now verify that the transformation is canonical by examining Hamilton’s equations in

the new variables. We have

Q̇ =
∂K

∂P
= −V ′(−P ), Ṗ = −∂K

∂Q
= −Q

m

Using the definitions of Q,P in terms of q, p we then get

ṗ = −V ′(q), −q̇ = − p

m
,

which are equivalent to the Hamilton equations in terms of q, p and H.

Note that this canonical transformation interchanges the roles of coordinates and mo-

menta! Evidently, whether or not a variable is deemed a coordinate on the configuration

space is not preserved by a canonical transformation. Thus the use of the words “coordi-

nates” or “momenta” is often merely a convenient habit. The Hamilton equations do not

require any distinction between coordinates and momenta aside from knowing which set

of variables gets the minus sign in the Hamilton equations.

You can check that this transformation is canonical in two additional ways. One is to

simply verify that Q and P define a canonical coordinate and momentum:

[Q,Q] = 0 = [P, P ], [Q,P ] = 1.
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The only non-trivial thing to check is the Poisson bracket between Q and P :

[Q,P ] =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
=
∂p

∂q

∂(−q)
∂p

− ∂p

∂p

∂(−q)
∂q

= 1.

The other way to check the transformation is canonical is to consider the transformation

of the phase space Lagrangian. We have:

PQ̇−
[
Q2

2m
+ V (−P )

]
= −qṗ− p2

2m
− V (q) = pq̇ −

[
p2

2m
+ V (q)

]
+
d

dt
(−pq).

From this relation you can see that the phase space Lagrangian’s form is preserved up

to a total derivative and with the appropriate relationship between Hamiltonians in two

different coordinate systems.

Time evolution as a canonical transformation

We can view time evolution itself as a canonical transformation! Let (q, p) be canonical

with Hamiltonian H = p2

2m . This system is the free particle in one dimension. Consider

the time-dependent canonical transformation: (q, p)←→ (Q,P ) is

q = Q+
P

m
t, p = P

with inverse

Q = q − p

m
t, P = p.

Note the physical meaning of the old and new variables: (q, p) represent the values of

the coordinates and momenta at time t given that they had values (Q,P ) at time t = 0.

Thus q(t) and p(t) can be viewed as solutions of the Hamilton equations with Hamiltonian

H = p2

2m and initial conditions q(0) = Q, p(0) = P . With H(q, p) = p2

2m , the canonical

nature of the transformation can be checked using Poisson brackets, which I leave to you

as an exercise. We will check the canonical transformation here by computing the change

in the phase space Lagrangian since this will show us something interesting about the

relationship between the Hamiltonians in the different variables. We find (exercise)

pq̇ − p2

2m
= PQ̇+

d

dt

(
P 2t

2m

)
.

We see that the transformation is indeed canonical, and that Hamiltonian describing time

evolution of the (Q,P ) variables vanishes! This is because (Q,P ) are playing the role of

initial data; initial conditions don’t change in time. Alterntatively, we have made a change

of variables which already implements the dynamics, so the Hamilton equations are simply:

Q̇ = 0 = Ṗ .

8



Phase Space Variational Principle. Canonical Transformations.

Summary

Canonical transformations are coordinate transformations on phase space such that

(with an appropriate redefinition of the Hamiltonian) the equations of motion can still be

constructed via the Hamilton equations. Aside from explicitly verifying the definition, we

have seen two ways to check whether a transformation is canonical. One way is to check

that the canonical transformation preserves the fundamental Poisson bracket relations.

The second way to check that a transformation is canonical is to verify that the phase

space Lagrangian changes only up to a total derivative. This latter method also shows how

the Hamiltonians in the different coordinate systems are related. If the transformation is

time-independent, the Hamiltonians are related simply by substitution according to the

change of variables. If the transformation is time-dependent, the Hamiltonian changes by

substitution and by the sddition of new terms to account for the time dependence which

was injected by hand.
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