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Normal Modes. Simultaneous Diagonalization of Quadratic Forms. Forced Oscillations.

Relevant Sections in Text: §6.1–6.3, 6.5

Oscillations of systems with more than one degree of freedom.

So far we have studied (small) oscillations of systems with a single degree of freedom.

Systems with more degrees of freedom can exhibit much more intricate behavior in the

vicinity of stable equilibrium. However, this more intricate behavior can always be viewed

as the superposition of harmonic motions of decoupled degrees of freedom — the normal

modes of vibration. We shall first spend a little time developing the general theory, and

then we shall spend some time on examples.

Suppose we have a system with n generalized coordinates qi, i = 1, 2, . . . , n, and a

Lagrangian of the form

L =
1

2
gij(q)q̇

iq̇j − V (q).

Recall that we use the summation convention; there is a double sum in the first term of

L. The “metric” gij(q) is a symmetric array which may depend upon the configuration

coordinates. There is no loss of generality by assuming the metric to be symmetric,

gij = gji,

since only the symmetric combination appears in the sum over i and j (exercise). Usually,

the metric is diagonal (e.g., in spherical polar coordinates), but we have seen examples

where the metric is off diagonal (e.g., pendulum with moving point of support).

Critical points of V , i.e., points qi0 such that(
∂V

∂qi

)
(q0) = 0,

define equilibrium configurations of the system (exercise). We will sometimes suppose that

the equilibrium is stable, i.e., qi0 is a (local) minimum of V . But you should always be

thinking about the other types of equilibrium as we go.

Let us approximate the motion in the neighborhood of a point of equilibrium by defining

xi = qi − qi0,

and expanding the Lagrangian in a Taylor series about xi = 0. To the first non-trivial

order we get (exercise)

L ≈ 1

2
Mij ẋ

iẋj − 1

2
Kijx

ixj
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where

Mij = gij(q0), Kij =

(
∂2V

∂qi∂qj

)
(q0),

and we have dropped an irrelevant additive constant V (q0), i.e., we have adjusted the zero

of potential energy to be at qi0. We have that Mij = Mji and we assume that the potential

energy is sufficiently smooth so that the matrix of second partial derivatives is symmetric

at the critical point q0:

Kij = Kji.

The (approximate) EL equations are (exercise)

Mij ẍ
j +Kijx

j = 0,

which are coupled system of n homogeneous, linear ODEs with constant coefficients. Defin-

ing ~x as a column vector with entries xi, and viewing Mij and Kij as (symmetric) matrices

M and K, we can write the EL equations in the matrix form (exercise):

M~̈x = −K~x.

Let us note that if qi0 is a point of stable equilibrium then the symmetric matrix

K is positive definite, that is, it can have only positive eigenvalues.* This is because a

negative or zero eigenvalue will correspond to displacements xi which either lower or do

not change the potential energy in an arbitrarily small neighborhood of the equilibrium

point (exercise), which contradicts our assumption of stable equilibrium. Conversely, since

every symmetric matrix can be diagonalized, if the eigenvalues are all positive definite then

the point qi0 is a minimum. Put differently, qi0 is a point of stable equilibrium if and only

if the quadratic form

K(~v) := Kijv
ivj

is positive definite, which means K(~v) > 0 for all ~v 6= 0. Physically this means that any

displacement xi from equilibrium will increase the potential energy. All this discussion is

just restating standard results from multivariable calculus.

Likewise, positivity of the kinetic energy implies that in any physical application the

symmetric matrix M should be positive definite. This means the quadratic form

M(x) := Mijx
ixj

is positive definite, i.e., M(~x) > 0 for all ~x 6= 0. We assume this in what follows.

* Note that a symmetric, real matrix always admits complete set of eigenvectors with real
eigenvalues.
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Here’s our strategy for analyzing the (approximate) EL equations. We can write the

EL equations as (exercise)

~̈x+ (M−1K)~x = 0,

where M−1 exists because M is positive definite (exercise). Suppose we can find an

eigenvector ~a of M−1K with eigenvalue ω2. (For now, we allow ω to be complex.) Then

it is easy to see that we will get a solution the form

x = ~a cos(ωt+ β).

Thus, provided ω2 > 0, i.e., ω is real and non-vanishing, some combination of the displace-

ments of the system (determined by the eigenvector) is behaving as a harmonic oscillator

with frequency ω. If we can find enough eigenvectors, we will be able to build the general

solution to the EL equations by superposition. Because the general solution should involve

2n integration constants — corresponding to initial positions and initial velocities, we will

need n independent solutions of the above form (exercise), i.e., n linearly independent

eigenvectors, to get the general solution in this manner.

Our goal, then, is to determine the eigenvalues ω2 and the eigenvectors ~a. We will

write our eigenvalue equation in the equivalent form (exercise):

(K − ω2M)~a = 0.

Thus ~a is an eigenvector of the matrix (K − ω2M) with eigenvalue zero. You will recall

the basic result from linear algebra that the square matrix K − ω2M has an eigenvector

with eigenvalue zero if and only if (exercise)

det(K − ω2M) = 0.

This is the characteristic equation for ω; it is a polynomial equation for ω of order 2n.

Thus ω, called the characteristic frequency, arises as a root of a polynomial of order 2n.

In general there are 2n roots of the characteristic equation. But notice that if ω

is a solution, then so is −ω since they both yield the same ω2. Since it is ω2 which

determines the eigenvector, we see that changing the sign of ω does not give a new solution

(linearly independent eigenvector). Thus, without loss of generality, we can assume that

ω > 0. Thus we get n characteristic frequencies. At this point, as far as we know,

these frequencies may be non-vanishing and real, or zero, or imaginary. The real solutions

correspond to stable directions in configuration space. The imaginary solutions correspond

to directions in configuration space relative to which the equilibrium is unstable. The

vanishing frequencies correspond to directions in configuration space relative to which we

have neutral equilibrium. Corresponding to each of these roots is an eigenvector ~a and

hence a solution ~x to the EL equations.
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It is not hard to see that if the potential energy quadratic form is positive definite then

ω2 > 0, so that there are n real, positive characteristic frequencies. To see this, simply

note that for any displacement ~x solving the equations of motion we have

ω2M(~x) = K(~x).

Because both quadratic forms are positive definite, M(~x) > 0 and K(~x) > 0, it follows

that

ω2 > 0,

as desired.

Physically speaking, the existence of n positive roots for ω stems from our assumption

that q0 is a point of stable equilibrium, which mathematically means K(~x) is positive

definite. If K(~x) could be negative or zero, allowing for complex or vanishing frequencies,

this would lead to exponential or linear (rather than oscillatory) solutions. Henceforth we

assume we have stable equilibrium and just focus on the sinusoidal solutions. You should

have no problem adapting our discussion to the other cases (and we will have an example

of neutral equilibrium in a little while)

Once we have a characteristic frequency ω, we can reconstruct the corresponding ai

by solving the equation (K − ω2M)~a = 0. The solution is guaranteed to exist because

ω solves the characteristic equation. In this way we have, in fact, found an eigenvector

(~a) of M−1K with eigenvalue ω2 (exercise). It is, in general, possible to find n roots of

the characteristic equation along with n orthogonal — and hence linearly independent —

eigenvectors (more on this shortly). Each of the (real) solutions obtained through this

procedure evolves in time harmonically at the characteristic frequency; these solutions

are called normal modes. Let us denote the characteristic frequencies by ωα and the

corresponding normalized eigenvectors by ~aα = {aiα}, α = 1, 2, . . . , n. The general solution

to the EL equations is then a superposition of the normal modes:

xk(t) =
∑
α

cαa
k
α cos(ωαt+ βα),

where cα and βα are constants (of integration) determined by initial conditions.

Normal Modes - The Recipe

Let us summarize the construction of the normal modes of vibration described by the

Lagrangian, which approximates the dynamics of a system near equilibrium:

L =
1

2
Mij ẋ

iẋj − 1

2
Kijx

ixj , i, j = 1, . . . , n.
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First we solve the characteristic equation

det(ω2M −K) = 0

for the characteristic frequencies ωα, α = 1, . . . , n.

We then solve the linear equations

(ω2
αM −K)~aα = 0

for the corresponding vectors ~aα, α = 1, . . . , n. The normal modes of vibration are*

~Θα(t) = ~aα cos(ωαt+ βα).

The general motion of the system in the vicinity of stable equilibrium (in the harmonic

approximation) is a superposition of the normal modes. The superposition goes over the

amplitudes and phases of each oscillator. These coefficients are determined by initial

conditions. We have

~x(t) =
n∑

α=1

Cα~Θα(t).

An Elementary Example

As a very simple example of finding normal modes and characteristic frequencies, let

us consider a system described by the Lagrangian

L =
1

2
m(ẋ2 + ẏ2)− 1

2
mω2

0(x2 + y2)− 1

2
mα2(x− y)2.

This system can be viewed as two identical one-dimensional harmonic oscillators (natural

frequency ω0 ) with a coupling by a harmonic force (natural frequency α) (exercise).

The matrices M and K are given by (good exercise!)

Mij = mδij ,

and

Kxx = Kyy = m(ω2
0 + α2), Kxy = Kyx = −mα2.

We now have

K − ω2M = m

(
α2 + ω2

0 − ω
2 −α2

−α2 α2 + ω2
0 − ω

2

)
.

* Here we assume ωα 6= 0. If a characteristic frequency vanishes the corresponding normal
mode is of the form ~Θ = (c+ dt)~a, where c and d are constants.
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The characteristic equation is (exercise)

0 = det(K − ω2M) = m2
[
(α2 + ω2

0 − ω
2)2 − α4

]
.

The characteristic frequencies are then given by (exercise)

ω1 = ω0, ω2 =
√
ω2

0 + 2α2.

The corresponding normalized normal modes are determined by

~a1 =
1√
2

(
1
1

)
, ~a2 =

1√
2

(
1
−1

)
.

We have

Θ1 =
1√
2

(
1
1

)
cos(ω0t+ β1), Θ1 =

1√
2

(
1
−1

)
cos(

√
ω2

0 + 2α2t+ β2).

Evidently, the oscillation at frequency ω0 corresponds to the two masses moving ex-

actly in phase, so the coupling does not come into play, while the oscillation at frequency√
ω2

0 + 2α2 has the two masses moving exactly out of phase.

The general motion of the system is a superposition of these two normal modes. We

can write the general motion of the system in vector form as

~x(t) = C1~a1 cos(ω1t+ β1) + C2~a2 cos(ω2t+ β2),

or, more explicitly,

x(t) =
1√
2

(
C1 cos(ω1t+ β1) + C2 cos(ω2t+ β2)

)
y(t) =

1√
2

(
C1 cos(ω1t+ β1)− C2 cos(ω2t+ β2)

)
.

Here (C1, C2, β1, β2) are real constants which are determined by initial conditions. Despite

the fact that the motion is very regular, i.e., it is the superposition of harmonic oscillations,

the appearance of the motion can be quite complicated.

Example: Double Pendulum

Let us return to the coplanar double pendulum. The Lagrangian is

L =
1

2
(m1+m2)l21θ̇

2
1+

1

2
m2l

2
2θ̇

2
2+m2l1l2 cos(θ1−θ2)θ̇1θ̇2+(m1+m2)gl1 cos θ1+m2gl2 cos θ2.
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Recall that m1 has a fixed point of support, while m2 is supported at the location of m1.

Stable equilibrium occurs at θ1 = 0 = θ2. We expand in Taylor series about equilibrium

to get the approximate Lagrangian:

L =
1

2
(m1 +m2)l21θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 −

1

2
(m1 +m2)gl1θ

2
1 −

1

2
m2gl2θ

2
2.

Note that the coupling between degrees of freedom occurs through the kinetic terms. The

characteristic equation is (exercise)

0 = det

(
(ω2l21 − gl1)(m1 +m2) ω2m2l1l2

ω2m2l1l2 (ω2l22 − gl2)m2

)
.

The roots are (exercise)

ω2
± =

g

2m1l1l2

{
(m1 +m2)(l1 + l2)±

√
(m1 +m2)

[
(m1 +m2)(l1 + l2)2 − 4m1l1l2

]}
.

To carry on, let us consider a special case. Suppose the two pendula are identical: m1 =

m2 = m, l1 = l2 = l. Then the characteristic frequencies become

ω2
± =

g

l
(2±

√
2).

Note that all dependence upon the mass drops out. In this case the normal modes are

determined by

a± = C

(
1
∓
√

2

)
.

The normal mode Θ+ has both masses having velocities out of phase; the normal mode

Θ− has the velocities in phase.

Example: Linear triatomic molecule

As another application of our theory let us consider the motion near equilibrium of a

linear triatomic molecule. By this we mean that we have two atoms of mass m located

symmetrically on either side of an atom of mass M . Let all three atoms lie on a line.

For simplicity we only consider longitudinal motion, i.e., motion along the extent of the

molecule. We assume that, near equilibrium, the restoring force on the atoms is −kx, where

x is the displacement of an atom from equilibrium. In detail, let x1 and x2 denote the

longitudinal displacements of each m from equilibrium, and let X denote the displacement

of M from equilibrium. The potential energy is approximated by (exercise)

V =
k

2

[
(X − x1)2 + (X − x2)2

]
.
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The kinetic energy is simply

T =
1

2
m(ẋ2

1 + ẋ2
2) +

1

2
MẊ2.

Ordering the coordinates on the configuration space as (x1, x2, X), the matrices of

interest are (exercise)

M =

(
m 0 0
0 m 0
0 0 M

)
,

K =

(
k 0 −k
0 k −k
−k −k 2k

)
.

The characteristic equation is (exercise)

ω2(k − ω2m)[k(M + 2m)− ω2Mm] = 0.

The solutions are (exercise)

ω1 = 0 (!!!), ω2 =

√
k

m
, ω3 =

√
k

m

(
M + 2m

M

)
.

The appearance of a zero frequency mode is, at first, a little disconcerting, but simply

reflects the possible motion in which all three masses move with a uniform translation (see

below). The other two modes represent oscillations near equilibrium. To see all this, we

need to compute the normal modes. We get (exercise)

a1 = N1

(
1
1
1

)
, a2 = N2

(
1
−1
0

)
, a3 = N3

(
1
1
−2m
M

)
,

where the N ’s are normalization constants. The motion of mode 1 is rigid motion at

constant velocity. To see this we simply note that

x1 = x2 = X = at+ b

solves the equations of motion and with zero frequency (exercise). Note that a spatial

translation of the system is a symmetry of the Lagrangian, so the total (center of mass)

momentum is conserved. If desired, we can work in the rest frame of the center of mass;

this reduction eliminates the center of mass degree of freedom and leaves two oscillatory

degrees of freedom. The motion of mode 2 has the central atom at rest and the two

endpoint atoms oscillating 180 degrees out of phase with the same amplitude. The third

mode has the endpoint atoms in phase, with the same amplitude while the center atom
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moves 180 degrees out of phase with them and with a different amplitude. These latter

two modes keep the center of mass at rest.

As usual, the general motion of the molecule is a linear superposition of the normal

modes with the coefficients of the superposition determined by initial conditions.

Finally, let us briefly and qualitatively consider the general, non-longitudinal motion

of the molecule. Of course, if we allow for vibrations perpendicular to the line defined of

the molecule we have more degrees of freedom (namely, 9) to consider. While the explicit

computations are more lengthy, nothing conceptually new arises. There will be a number

of zero frequency modes corresponding to rigid motions (translations and rotations) of the

molecule. The remaining modes will be truly vibrational. Of the 9 degrees of freedom and

the 9 corresponding modes, 5 will be of the zero-frequency type (exercise). Naively, there

are 3 translations and 3 rotations, but the linear nature of the molecule, and its modeling

via point masses, means that rotations about the molecular axis are not motions of the

system. Thus there are only 5 zero frequency modes: 3 translations + 2 rotations. This

leaves 4 vibrational modes. Two of these modes–the longitudinal modes–we have already

studied. The other two modes are transverse to the axis of the molecule. If we think of

this axis as the x-axis, then the transverse vibrations come from displacements in the y

and z directions. Clearly there is nothing to physically distinguish y from z, so we expect

that the frequencies for the two transverse normal modes will be degenerate. Indeed, there

is nothing to pick out which orthogonal directions to the molecule should be y and z. The

system exhibits a symmetry under rotations about the molecule axis. Thus the normal

modes for transverse vibrations will be along any two perpendicular directions each of

which is perpendicular to the molecule axis.

The rigid motions of the molecule, which give rise to the zero frequency modes, cor-

respond to symmetries and conservation laws. Since the potential energy is changed only

by a relative motion of the atoms, it clearly will exhibit a symmetry with respect to any

transformation that leaves the relative position of the atoms unchanged, i.e., rotations

and translations of the molecule as a whole. The kinetic energy is, of course, invariant

under such transformations (exercise). Thus the Lagrangian is invariant under the rigid

rotations and translations of the molecule. The corresponding conservation laws are 5 in

number (3 translations and 2 rotations–exercise); they are the 3 components of the cen-

ter of mass momentum (no external forces) and 2 components of angular momentum (no

external torques).

A Nice Mathematical Interpretation of Normal Modes: Simultaneous diago-

nalization of quadratic forms

It is worthwhile giving an alternative description of the derivation of normal modes and
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characteristic frequencies. This alternative description involves the notion of simultaneous

diagonalization of quadratic forms. The idea is that the construction of the normal modes

amounts to diagonalizing the matrices K and M , and the characteristic frequencies are

coming from the diagonal entries of these matrices. As we shall see, strictly speaking, K

and M are better thought of as quadratic forms— equivalently, symmetric tensors. One

payoff of this slightly more sophisticated point of view is that it explains why we always

get a basis of eigenvectors for M−1K and hence why any motion of the dynamical system

near equilibrium can be viewed as a superposition of the normal modes..

Recall that M can be viewed as assigning a number M(~v) (twice the kinetic energy)

to a vector ~v (a velocity) via

M(~v) = Mijv
ivj .

The vectors (displacements, velocities) etc. are elements of a vector space. Denote the

basis for the vector space as ~ei, i = 1, 2, . . . , n. Consider a change of basis ~ei → ~e ′i in which

the components of the vector ~v change via

vi → vi′ = Λijv
j .

In a matrix notation:

v′ = Λv.

The kinetic energy — a physically observable quantity — cannot change under a change

of basis; the components of M must therefore change as (exercise)

M ′ij = Ski S
l
jMkl,

or, in matrix notation,

M ′ = STMS,

where S = Λ−1. This type of transformation of a matrix is called a congruence transfor-

mation.

Note that this is not the same transformation rule as that of a matrix representing a

linear operator. A matrix L representing a linear operator transforms under a change of

basis as a similarity transformation: L → S−1LS. Thus a quadratic form (equivalently,

a symmetric rank 2 tensor) is not the same as a linear operator. If the change of ba-

sis is an orthogonal transformation, for which ST = S−1, then the distinction between

transformation properties disappears.

Because the quadratic form M is positive definite, we can use it to define a scalar

product:

(~v, ~w) ≡M(~v, ~w) = Mijv
iwj .
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Exercise: Show that this does define a scalar product.

As you know, we can always find an orthonormal basis for a vector space with scalar

product. Thus we can always find a basis ~ei for which

M(~ei, ~ej) = δij .

In this basis the kinetic energy is a sum of squares (exercise):

M(~v) = (v1)2 + (v2)2 + . . .+ (vn)2.

Thus we have “diagonalized” the quadratic form defined by M .

Under the change to an orthonormal basis with respect to the scalar product defined

by M , the matrix K representing the potential energy quadratic form will change by

a congruence transformation to some other matrix, not necessarily diagonal. We now

consider making a further change of basis characterized by a matrix S that keeps M

unchanged from its diagonal form but which diagonalizes K. This change of basis that

preserves M must be an orthogonal transformation since in the current basis

STMS = M =⇒ STS = I.

Under an orthogonal transformation the symmetric matrix K transforms via similarity

transformation. But it is a standard result from linear algebra that every symmetric

matrix can be diagonalized by a similarity transformation with an orthogonal matrix.

Note, however, that this result does not allow us to turn K into the identity matrix, only a

diagonal matrix. Thus we can always simultaneously diagonalize any two quadratic forms,

provided one of them is positive definite so that it can be used to define a scalar product.

Here is a slightly different point of view of the last step in which K is diagonalized.

In the basis in which M is the identity matrix but K is not yet diagonalized, our original

computation of the characteristic frequencies and normal modes comes from solving

(ω2I −K)~a = 0,

where K is the matrix computed arising from the congruence transformation that made

M the identity. Evidently, in this basis we are just solving

K~a = ω2~a,

i.e., the eigenvalue problem for K in this basis. Finding the rotation which diagonalizes

K is then essentially equivalent to solving this eigenvalue problem since the eigenvectors

define an orthonormal basis in which K is diagonal.
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A nice – if somewhat abstract – way to summarize this result is that M defines an

inner product relative to which M−1K is symmetric. Every symmetric operator on an

inner product space admits a basis of eigenvectors. Finding these eigenvectors amounts to

finding the normal modes.

This way of doing the analysis also has the virtue of making it clear the solutions one

gets (vectors and frequencies) define a basis for the vector space. This guarantees that all

solutions of the EL equations can be obtained from the normal modes by superposition.

When we work in the basis in which the two quadratic forms M and K are diagonal, we

are using the directions defined by the normal modes to define new generalized coordinates.

More precisely, if we make a change of generalized coordinates by making a change of

basis that diagonalizes M and K as described above, then in this system of generalized

coordinates (denoted Qα, α = 1, . . . , n) the Lagrangian will have the form (exercise):

L =
1

2

n∑
α=1

(
Q̇α2 − ω2

αQ
α2
)
.

The relation between the Qα and the normal modes Θα defined earlier is that the former

are normalized so that the kinetic energy is just a sum of squares.

The relation between the normal modes Qα and the original coordinates xi is as follows.

Let the original vector space basis be denoted by ~bi, i = 1, 2, . . . , n, and let the basis which

diagonalizes M and K be denoted by ~eα (these are the normalized eigenvectors). We have

the change of basis matrices
~bi = Sαi ~eα, ~eα = Siα~ei.

We have

~x = xi~bi = Qα~eα,

so that

xi = SiαQ
α.

Forced Oscillations, revisited

As mentioned earlier, a typical scenario in which small oscillations are relevant is where

one has a system in stable equilibrium which is subjected to an external force ~F which

moves the system from equilibrium. We allow this force to be time dependent, but we

assume it does not depend upon the configuration variables of the system. This introduces

an additional potential energy term V1 to the quadratically approximated Lagrangian given

by

V1 = −~F (t) · ~x.

12



Normal Modes.

Being linear in the displacement from equilibrium, this term is retained as is in the har-

monic approximation.

Using the normal modes of vibration, the motion of the system can be reduced to a

collection of uncoupled – but now forced – oscillators. Indeed, let us relate the original

vector space basis, say ~bi, to that provided by the normal modes, ~eα by the change of basis

matrix S:
~bi = Sαi ~eα, ~eα = Siα

~bi.

We then have

~x = xi~bi = Qα~eα,

where

Qα = Sαi x
i,

and

V1 = −Fi(t)xi = −Fα(t)Qα,

where

Fα(t) = SiαFi(t).

So the Lagrangian takes the form

L(Q, Q̇, t) =
1

2

n∑
α=1

(
Q̇α2 − ω2

αQ
α2 + Fα(t)Qα

)
.

We have n uncoupled, forced oscillators. We can therefore apply the technology we devel-

oped earlier for analytically displaying the forced oscillations to each normal mode.
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