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Symmetries and Conservation Laws

By a conservation law we mean a quantity constructed from the coordinates, velocities,

accelerations, etc. of the system that does not change as the system evolves in time. When

the equations of motion are second order, conservation laws typically arise as functions

on the velocity phase. Although I won’t be too particular about it, one often restricts

the terminology “conservation law” or “first integral” to denote quantities built from the

phase space variables only - not explicitly involving time. The term “constant of the

motion” is reserved for the more general class of quantities which may include time in their

definition. For example, a free particle moving in one dimension, say x, has its velocity

ẋ as a conserved quantity (also a constant of the motion) – this is the conservation of

momentum, of course. A constant of the motion (but not a conservation law) is provided

by the explicitly time-dependent quantity x0 = x − ẋt, as you can easily check. This

quantity physically represents the position at time t = 0.

For a more detailed example, consider a harmonic oscillator in one dimension. Let the

generalized coordinate be x. The Lagrangian is

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2,

where m, k are constants. The equation of motion is of the form

mẍ+ kx = 0.

The energy is given by

E(x, ẋ) =
1

2
mẋ2 +

1

2
kx2.

The energy is conserved because we have the identity

dE

dt
= ẋ(mẍ+ kx),

so that, when E is evaluated on a solution x = x(t) to the equations of motion, the resulting

function E(t) ≡ E(x(t),
dx(t)
dt ) satisfies

dE(t)
dt = 0. To see this explicitly, recall the general

solution to the equation of motion is

x(t) = A cos(ωt+ α),
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where A and α are constants (determined, e.g., by initial conditions) and ω =
√

k
m . We

then have

E(x(t),
dx(t)

dt
) =

1

2
kA2,

which is indeed time independent.

I do not think I need to impress upon you the importance of conservation laws in

physics. On the practical side, one can use conservation of energy, momentum, etc. to

unravel many aspects of the motion of a system without having to explicitly integrate the

equations of motion. Indeed for systems with one degree of freedoms, a conservation law

usually determines everything! More generally, if there are enough conservation laws it

is possible to completely solve for the motion. On the other hand, I cannot emphasize

enough the fact that almost all dynamical systems are not simple enough for us to study

their motion by integrating the equation of motion, i.e., there are usually not enough

conservation laws to completely determine the motion. Still, even in these cases, the

conservation laws provide some of the principal clues we have as to the dynamical behavior

of such systems. At a deeper level, we use conservation laws to guide us in our quest to

find what are the physical laws governing the universe. Throughout the history of physics

we have repeatedly revised our formulation of the laws of nature. The current state of the

art involves the “standard model” of strong and electroweak forces along with Einstein’s

general theory of relativity for the gravitational force. In building these theories, the

myriad of conservation laws observed in nature* form the foundation for the work of the

theoretical physicist. It is reasonable to suppose that future generations of physicists will

further revise our theory of matter and interactions of matter, but it much less likely that

these theories will not incorporate conservation laws.

One of the principal advantages of the Lagrangian formulation of mechanics (and

its field theoretic generalizations) is the power it provides for analyzing the existence of

conservation laws. The fundamental result we want to explore now is that the existence of

conservation laws stems from the existence of symmetries of the Lagrangian.

Translation Symmetry and Conservation of Momentum.

Let us begin by noting a very easy result: when a (generalized) coordinate does not

appear in the Lagrangian, then a conserved quantity results. When a coordinate, q1 say,

is absent in the Lagrangian we say that q1 is cyclic or ignorable. In this case we have

∂L

∂q1
= 0.

* Of course there is energy, momentum and angular momentum, but recall we also have
conservation of charge, baryon number, lepton number, weak isopsin, strangeness, charm,
etc.
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The EL equation for the q1 degree of freedom is then simply (exercise)

d

dt

∂L

∂q̇1
= 0,

which says that the quantity ∂L
∂q̇1

is conserved. For a Newtonian particle for which the

qi are the Cartesian coordinates of the particle, the conserved quantity resulting from a

cyclic coordinate is just the corresponding component of the usual Newtonian momentum

(exercise). This motivates the following definition. For a given degree of freedom, qi, the

quantity

pi(q, q̇, t) =
∂L

∂q̇i

is called the canonical momentum conjugate to qi. We see that if qi is cyclic, its conjugate

momentum is conserved. Note that if we define Ei as the EL expressions,

Ei(q, q̇, q̈, t) :=
∂L

∂qi
− d

dt

∂L

∂q̇i
,

then the conservation law associated with cyclic q1 follows from the identity

d

dt
p1 = E1.

As a simple example of this, consider projectile motion: a particle with mass m moves

(for simplicity) in two dimensions with configuration space coordinates qi = (x, y) and a

potential energy function V (x, y) = mgy. The Lagrangian is, of course,

L =
1

2
m(ẋ2 + ẏ2)−mgy,

and x is clearly cyclic. The EL equations reveal the conservation law – the x-component

of momentum is conserved:

d

dt
(mẋ) = 0,

d

dt
(mẏ) = −mg.

Exercise: Suppose you were a bit naive and used an x-y coordinate system rotated by an

angle α relative to the one used just above. What happens to the cyclic coordinate and

its conservation law?

If a coordinate, say, q1, is cyclic, this obviously implies that the Lagrangian is invariant

under translations of this coordinate (because the Lagrangian doesn’t depend upon that

coordinate!):

L(q1 + constant, q2, . . . , q̇1, q̇2, . . . , t) = L(q1, q2, . . . , q̇1, q̇2, . . . , t).
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Thus translation in the q1 coordinate does not change the form of the Lagrangian. We say

that translation in q1 is a symmetry of the Lagrangian, or that the Lagrangian is invariant

under translations in q1. So, invariance of the Lagrangian with respect to translations in

the qi coordinate leads to conservation of the canonical momentum pi. Note that the EL

equations will not depend upon q1 either, so that they are the exact same equations no

matter what values q1 takes — the equations are invariant under translations in q1. We

say that translations in q1 are a symmetry of the EL equations. But it is the symmetry of

the Lagrangian which leads to the conservation law.*

As mentioned above, the choice of the term “momentum” to describe pi stems from

the fact that for Lagrangian for a system of Newtonian particles:

L =
1

2
m(1)~̇r

2
(1) +

1

2
m(2)~̇r

2
(2) + . . .− V (~r(1), ~r(2), . . . , t),

we have (exercise)

~p(i) = m(i)~̇r(i).

We will call m(i)~̇r(i) the mechanical momentum of the ith particle. For system of particles

moving under the influence of a potential via Newton’s second law, the Cartesian com-

ponents of the canonical momenta are the same as that of the mechanical momenta. If

the Lagrangian is invariant under a translation of one of the coordinates, this means the

potential energy is likewise invariant, and conversely (exercise). It is clear why this leads

to a conservation law from the Newtonian point of view: if the potential is translationally

invariant in a certain direction, then its derivative in that direction – which gives the force

in that direction – vanishes, leaving the corresponding momentum component unchanged

in time.

When we use generalized coordinates to define the configuration of the system it is

possible that the canonical momentum is not what you would usually call the mechanical

momentum. Moreover, one may have translational symmetries which do not manifest

themselves via cyclic coordinates. For example, consider a particle moving in 3-d under

the influence of a central force derivable from the potential energy V = V (|~r|). Because

of the spherical symmetry of the problem, it is natural to use spherical polar coordinates;

the Lagrangian is (exercise)

L =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)− V (r).

Clearly the coordinate φ is cyclic. The resulting conservation law is

d

dt
pφ = 0,

* In general, every symmetry of the Lagrangian is a symmetry of the equations of motion.
But the converse is not true.
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where

pφ =
∂L

∂φ̇
= mr2 sin2 θφ̇.

In this case the conserved quantity is the z-component of angular momentum. More on

this shortly.

It is instructive to consider the special case V = 0 in spherical polar coordinates.

Of course, in Cartesian coordinates the Lagrangian is translationally invariant in each of

(x, y, z). That translational symmetry still exists in spherical polar coordinates, it is just

not apparent. We will see how to think about this issue shortly.

Another important case where the mechanical and canonical momenta differ—even for

Cartesian coordinates—occurs for particle motion in a prescribed electromagnetic field.

Recall that the Lagrangian is

L =
1

2
m~̇r

2 − qφ+
q

c
~A · ~̇r.

The canonical momentum is, in vector notation, (exercise)

~p(~r, ~̇r, t) = m~̇r +
q

c
~A(~r, t).

The canonical momentum in this case need not have immediate physical significance since

it depends upon the choice of vector potential, which is not uniquely determined by a given

electromagnetic field. Still, it is the canonical momentum which will be conserved when a

coordinate is cyclic.*

To summarize, if a coordinate does not appear in the Lagrangian, i.e., the Lagrangian

admits a translational symmetry in a coordinate, its conjugate momentum will be con-

served.

Time translation Symmetry and Energy Conservation

We consider a system with generalized coordinates qi and Lagrangian

L = L(q, q̇, t).

We assume that L is unchanged by a time translation:

L = L(q, q̇) ⇐⇒ ∂L

∂t
= 0.

This lack of explicit t dependence means the Lagrangian is the same function on the velocity

phase space for all time. This also implies the equations of motion are the same differential

* Also, it turns out that it is the canonical momentum which is to be represented by a
derivative operator in the position representation of quantum mechanics.
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equations for all time t (exercise).* Thus we say that such systems admit a time translation

symmetry.

Now consider the restriction of the Lagrangian to a curve qi(t) satisfying the EL equa-

tions. Denote this restriction by L(t):

L(t) := L(q(t),
dq(t)

dt
).

The dependence of L on time comes solely through its dependence on qi(t) and q̇i(t). Thus,

on such a curve, (exercise)
dL(t)

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i,

where it is understood that all quantities on the right hand side of the equation are eval-

uated on the curve. On a curve satisfying the EL equations we have

∂L

∂qi
=

d

dt

∂L

∂q̇i
.

So, assuming the curve qi(t) satisfies the EL equations, we have

dL

dt
=

(
d

dt

∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

=
d

dt

(
∂L

∂q̇i
q̇i
)
.

We conclude that, when evaluated on solutions qi(t) of the EL equations, we have the

result:
d

dt

(
∂L

∂q̇i
q̇i − L

)
= 0.

Evidently, for time translation invariant Lagrangians the quantity piq̇
i−L is conserved.

To see what kind of quantity is conserved here, let us go back to the harmonic oscillator,

L =
1

2
mẋ2 − 1

2
kx2.

This Lagrangian is time translation invariant. You can easily check that

∂L

∂ẋ
ẋ− L =

1

2
mẋ2 +

1

2
kx2,

which is the conserved energy of the oscillator. This leads us to define the canonical energy

E(q, q̇, t) of a system described by the Lagrangian L(q, q̇, t) as

E(q, q̇, t) =
∂L

∂q̇i
q̇i − L.

* Such equations, with no explicit dependence on the independent variable, are called autonomous.
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Our result is that, when ∂L
∂t = 0, and when evaluated on a curve satisfying the equations

of motion, the canonical energy is conserved:

d

dt
E(q(t), q̇(t)) = 0.

We can express energy conservation as an identity which holds when the Lagrangian

does not depend upon time. For a general Lagrangian L = L(q, q̇, t) we have (exercise)

d

dt
E = −q̇i

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
− ∂L

∂t
.

From this identity you can see that E, when viewed as a function on velocity phase space is

unchanged as you move along a curve satisfying the EL equations provided the Lagrangian

has no explicit time dependence.

As already mentioned, the use of the term “energy” to label this conservation law

stems from the fact that for the usual type of Newtonian system the quantity E(q, q̇, t)

corresponds to our familiar definition of mechanical energy – kinetic plus potential. For

example, a particle moving in a given potential has the Lagrangian

L =
1

2
m~̇r

2 − V (~r, t).

We have – using Cartesian coordinates (exercise)

∂L

∂ẋi
ẋi = mẋiẋ

i = 2T,

so that

E = 2T − (T − V ) = T + V.

Thus we recover the usual definition of energy as the sum of kinetic and potential energies.

We learn, then, that this quantity is conserved for a particle moving in a given potential

provided the potential is time independent.

More generally, whenever L = T −V and the kinetic energy T (q, q̇, t) is a homogeneous

function of degree two in the velocities, we have that (exercise)

∂L

∂q̇i
q̇i = 2T,

and hence,

E = T + V.

It should be noted that, unless the above requirements are satisfied, the canonical energy –

the conserved quantity associated with time translation invariance of a Lagrangian – need
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not be the mechanical energy T +V . In particular, it is possible that the canonical energy

is conserved, but is not the mechanical energy. Conversely, the mechanical energy might

be conserved, but need not in general be the same as the canonical energy.

Rotational Symmetry and Conservation of Angular Momentum

Here we demonstrate that rotational symmetry of a Lagrangian leads to conservation

of angular momentum. You have already seen an example of this: the particle moving in a

central force has the spherical coordinate φ as a cyclic variable. The conjugate momentum

that is conserved is the z component of angular momentum. The kinetic energy is invariant

under rotations about any axis; for a central force the potential energy V = V (r) and

hence the Lagrangian L = T −V is invariant under rotations about any axis. This implies

that we can choose the z-axis along any direction and the corresponding component of

angular momentum will be conserved. Thus all components of angular momentum will be

conserved for a particle moving in a central force. More generally a Lagrangian which is

rotationally invariant about some axis will have the total angular momentum along that

axis conserved. In what follows we show this directly.

Let us begin with the Lagrangian for a single particle, L(~r, ~̇r, t). We want to impose the

condition that the Lagrangian is rotationally invariant in order to see the consequences.

Thus we need to get a mathematical handle on how the position and velocity of a par-

ticle change under rotations. Recall that to specify a rotation one needs to pick an axis

of rotation and an angle. Given these data, one can write down formulas for how vec-

tors transform. For simplicity, we use a very important strategy: focus on infinitesimal

rotations. The idea is that finite rotations can be built up by “many” infinitesimal trans-

formations. In particular, a Lagrangian is invariant under rotations about some axis if and

only if it is invariant about infinitesimal rotations about that axis.

We consider the change δL in the Lagrangian produced by an infinitesimal rotation

around an axis defined by the unit vector ~n by an angle ε << 1. First, we point out that

under such an infinitesimal rotation we have

δ~r = ε~n× ~r,

and

δ~̇r = ε~n× ~̇r.

This is easily verified with a judicious choice of coordinates, which you should verify as an

exercise. (Choose your z-axis along ~n, compute the effect of a rotation around by ε on ~r or

~̇r and expand everything to first order in ε. You can also convince yourself of the validity

of the above formulas by drawing some pictures.) Anyway, under a rotation about ~n by
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ε << 1 we have the change in the Lagrangian to first order in ε given by (exercise)

δL =
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi

=
∂L

∂xi
ε(~n× ~r)i +

∂L

∂ẋi
ε(~n× ~̇r)i.

Here we have set xi = (x, y, z).

Suppose the Lagrangian is rotationally invariant about ~n. An example of this would

be the Lagrangian for a charged particle in a uniform electric field oriented in the direction

n̂:

L =
1

2
mv2 + qE n̂ · ~r, E = const.

This means that δL given above must vanish. So we know the following identity holds for

such a rotationally invariant Lagrangian:

∂L

∂xi
(~n× ~r)i +

∂L

∂ẋi
(~n× ~̇r)i = 0.

In terms of the canonical momentum ~p conjugate to ~r, the EL equations are

Ei ≡
∂L

∂xi
− ṗi = 0.

The rotational symmetry identity, written above, can be expressed in terms of the EL

equations as (
~̇p+ ~E

)
· (~n× ~r) + ~p · (~n× ~̇r) = 0.

This identity can be rewritten as (exercise)

d

dt
[~n · (~r × ~p)] = −(~n× ~r) · ~E .

This is the statement that the component along ~n of the angular momentum,*

~M = ~r × ~p,

is conserved when evaluated on solutions to the EL equations. If the rotational invariance

is valid for any choice of ~n then all components of ~M will be conserved. Note however that

it is the canonical momentum that features in this conservation law, not the mechanical

momentum. We thus call ~M the canonical angular momentum and we call ~r × m~v the

mechanical angular momentum.

* I will use the symbol ~M for angular momentum since it is too easy to confuse the more
traditional notation ~L with the Lagrangian.
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Here are some elementary examples of rotational symmetry and conservation of angular

momentum. A particle moving in a central force field has a Lagrangian:

L =
1

2
m~̇r

2 − U(|~r|).

This Lagrangian is clearly invariant under rotations. As a really good exercise you should

verify the infinitesimal rotational invariance identity:

∂L

∂xi
(~n× ~r)i +

∂L

∂ẋi
(~n× ~̇r)i = 0.

Thus all components of angular momentum are conserved. This can, of course, be checked

directly by using the equations of motion. Using the fact that the particle obeys Newton’s

second law with a force directed along the position vector ~r, you can easily prove that ~r×~p
is conserved (exercise).

As another example, consider a particle moving in a uniform force field ~F . This

means that the Cartesian components of ~F are constants. A Lagrangian for this system is

(exercise)

L =
1

2
m~̇r

2
+ ~F · ~r.

This Lagrangian would, e.g., describe the motion of a particle near the earth’s surface.

While the kinetic energy is rotationally invariant about any axis, the potential energy in

this example is not invariant under all rotations. This is because the vector ~F is fixed

once and for all; ~F is not allowed to rotate along with ~r and ~̇r. Another way to see this

is to suppose that we choose our z-axis along ~F . Then the potential energy is of the form

U = −F z. Under a rotation about anything but the z-axis this function will change!

The potential energy is invariant under rotations about an axis parallel to ~F (exercise).

Another good exercise: verify

∂L

∂xi
(~F × ~r)i +

∂L

∂ẋi
(~F × ~̇r)i = 0.

for this Lagrangian. Consequently the component of angular momentum along ~F will be

conserved. Again, using the equations of motion (EL equations),

m~̈r = ~F ,

you can verify the conservation law explicitly (exercise).

Spacetime Symmetry, Closed Systems, and the Galileo Group

The usual model of space and time, which is tacitly part of Newtonian mechanics,

assumes that space and time are homogeneous and that space is isotropic. Thus a closed
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system (isolated from the external world) should “behave” the same – obey the same

dynamical laws – no matter where in the universe it is located, when the system is studied,

and no matter how the system is oriented in space. This suggests that the Lagrangian for

such a system should be unchanged under space and time translations of the whole system

as well as rotations of the whole system. Given the connection between symmetries and

conservation laws we then expect corresponding conservation laws. We explore this briefly

here.

Let us consider a closed — isolated — system of interacting particles labeled by posi-

tions, ~r(1), ~r(2), etc. Think of the particles as living inside a “black box” which does not

interact with the outside world. The assumption of homogeneity of time implies that the

Lagrangian for the system does not have any explicit time dependence and the total canon-

ical energy is conserved, as discussed previously. By the assumption of the homogeneity of

space the physical system behaves the same no matter where it is located in the universe.

The Lagrangian will be unchanged under a spatial translation of the entire system. This

means that the Lagrangian is invariant under the transformation

~r(a) −→ ~r(a) +~b, ∀i

where ~b is any constant vector. Labeling the Cartesian coordinates as xi
(a)

, a = 1, 2, . . .,

i.e., xi
(1)

= (x1, y1, z1), etc. this implies (exercise)

∑
a,i

bi
∂L

∂xi
(a)

= 0.

The EL equations for the motion of the particles imply (exercise)

d

dt

∑
a,i

bipi(a) ≡
d

dt

∑
a

~b · ~p(a) = 0,

where

pi(a) =
∂L

∂ẋi
(a)

,

and we have denoted the vector canonical momentum for each particle by ~p(a). The

quantity
~P =

∑
a

~p(a)

represents the total linear momentum for the system. We see that the invariance of physical

laws under a space translation by ~b implies that the component of the total momentum

along ~b is conserved. Of course, since ~b is arbitrary, all 3 components of ~P are conserved

for a closed system because of the homogeneity of space.
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For a Newtonian system, the Lagrangian is thus of the form

L =
∑
a

1

2
m(a)~̇r(a) − V (~r(1), ~r(2), . . .).

The conserved total energy is of the form

E =
∑
a,i

∂L

∂ẋi
(a)

ẋi(a) − L =
∑
a

1

2
m(a)~̇r(a) + V (~r(1), ~r(2), . . .).

The conserved total momentum is

~P =
∂L

∂~̇r(a)

=
∑
a

m(a)~̇r(a).

Although I won’t prove it here, it is worth noting that the requirement of symmetry of the

Lagrangian under spatial translations of the system implies that the potential energy func-

tion can only depend upon the position vectors through their pairwise vector differences,

i.e.,

V = V (~r(1) − ~r(2), ~r(1) − ~r(3), . . .).

As an example, let us consider the Earth-Sun system ignoring all other external inter-

actions. The Lagrangian is of the form

L =
1

2
mE~̇r

2
E +

1

2
mS~̇r

2
S − V (|~rE − ~rS |).

Here we usually take the potential energy to be of the form

V =
GmEmS

|~rE − ~rS |
.

But more sophisticated choices for V are possible. In any case, the homogeneity of space

demands that V = V (|~rE − ~rS |), so the Lagrangian is invariant under any translation of

the form

~rE → ~rE +~b, ~rS → ~rS +~b.

Neither the momentum of the Earth nor that of the Sun is conserved. But, because the

Lagrangian is translationally invariant, the total momentum:

~P = mE~̇rE +mS~̇rS

is conserved.

Let us now consider the implications of spatial isotropy. The isotropy of space implies

that a closed system will have a Lagrangian which is invariant under rigid rotations of all

the particles in the system. We have particles labeled by positions ~r(a) and velocities ~̇r(a).
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Suppose the system admits a rotationally invariant Lagrangian. More precisely, suppose

the Lagrangian is assumed invariant under a simultaneous rotation of all the positions

and velocities about an axis ~n (through the origin). The infinitesimal invariance condition

generalizes in a straightforward manner (exercise):

∑
a

(
∂L

∂~r(a)
· (~n× ~r(a)) + ~p(a) · (~n× ~̇r(a))

)
= 0.

As before, we can restrict this to a curve satisfying the EL equations to find (exercise)∑
a

(
~̇p(a) · (~n× ~r(a)) + ~p(a) · (~n× ~̇r(a))

)
= 0.

As before we can rearrange this as (exercise)

d

dt

∑
a

[~n · (~r(a) × ~p(a))] =
d

dt

(
~n ·
∑
a

~Ma

)
= 0.

Thus invariance of the Lagrangian under a simultaneous rotation about the axis ~n of all

degrees of freedom leads to conservation of the component along ~n of the total angular

momentum,
~Mtotal =

∑
a

~Ma.

As an example, let us return yet again to the Earth-Sun system (2-body central force

problem). The Lagrangian is of the form

L =
1

2
mE~̇r

2
E +

1

2
mS~̇r

2
S − V (|~rE − ~rS |).

Because the scalars vE , vS , and |~rE − ~rS | are invariant under rotations, the Lagrangian is

invariant under any simultaneous rotation of the Earth and Sun variables (exercise). The

conserved angular momentum is (exercise)

~P = mE~rE × ~̇rE +mS~rS × ~̇rS .

To summarize, closed systems can always be expected to have conservation laws for the

total energy, total momentum, and total angular momentum by virtue of the homogeneity

and isotropy of space and time.

I should emphasize that it is possible to have conservation laws for open systems as

well. We have already seen examples, but let me revisit this idea. For example, the Earth-

Sun system we have discussed is a closed system admitting the usual conservation laws.

But we often approximate the motion of the system by assuming the sun is fixed in space,
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letting the dynamical system consist of the motion of the Earth in the fixed potential of

Sun. So, if we simplify our model by assuming we can choose a reference frame in which

the Sun is fixed, e.g., ~rSun = 0, then the resulting system (Earth in a central force field

due to the “environment” – the Sun) is not a closed system and need not have all the space

and time symmetries. In this case the system lacks space translation invariance since it

does matter to the earth where it is in space (relative to the fixed sun). Consequently, the

Earth’s linear momentum is not conserved. But the Lagrangian still has no explicit time

dependence and is still rotationally invariant (about axes going through the sun) and so

the canonical energy,

E =
1

2
mE~̇r

2
E −

GmEmS

|~rE |
,

is conserved, as is the angular momentum,

~M = mE ṙE .

Of course, both of these conservation laws are used to great effect in studying the motion

of the Earth.

Noether’s Theorem

We have seen that the familiar conservation laws for energy, momentum, and angular

momentum all follow from symmetry properties of the Lagrangian. In your homework

you had to exhibit additional conservation laws in nature. It is natural to ask whether

other–indeed, if all–conservation laws arise via symmetries of a Lagrangian. The answer

is yes. This result, which is a key reason for the power of the Lagrangian formalism, is

known as Noether’s theorem. While we will not prove Noether’s theorem here, we can give

a good picture of how it works. Here it is.

Consider an infinitesimal transformation

δqi = F i(q, q̇, t), δq̇i =
d

dt
F i.

The idea here is that, given a curve qi = qi(t) the infinitesimal transformation defines a

varied curve

qi(t) + δqi(t) = qi(t) + F i(q(t),
dq(t)

dt
, t).

Note however that the variation here does not need to vanish at any endpoints. The change

in the Lagrangian (on a curve) due to this infinitesimal transformation can be computed

via

δL =
∂L

∂qi
F i +

∂L

∂q̇i
d

dt
F i.
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Symmetries and Conservation Laws

We say the Lagrangian is invariant under this transformation — equivalently: δq = F

defines an infinitesimal symmetry of the Lagrangian — if there exists a function G on the

velocity phase space such that

δL =
dG

dt
.

Because two Lagrangians differing by a time derivative give the same equations of motion,

this a suitable notion of symmetry. (Note that G may vanish in many cases.)

Noether’s theorem then guarantees that

Q =
∂L

∂q̇i
F i −G

is conserved when the EL equations hold:

Ei ≡
∂L

∂qi
− d

dt

∂L

∂q̇i
= 0.

To see this is a straightforward computation. On the one hand we have for any variation

(exercise)

δL = Eiδqi +
d

dt

(
∂L

∂q̇i
δqi
)
.

For a variation which is an infinitesimal symmetry we have

δL =
dG

dt
.

Putting these two results together we have for an infinitesimal symmetry δqi = F i:

d

dt

(
∂L

∂q̇i
F i −G

)
= −EiF i.

Thus, for solutions of the EL equations Q is conserved.

Noether’s Theorem (informally stated):

There is a one to one correspondence between Lagrangian symmetries and constants

of the motion. Given a Lagrangian symmetry, δqi (which may involve a function G in a

total derivative), the corresponding constant of the motion is

Q =
∂L

∂q̇i
δqi −G.

Remark:

Note that discrete symmetries (e.g., reflections) will not give rise to conservation laws

since they do not have an infinitesimal form.
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Symmetries and Conservation Laws

As an example of the use of this theorem, let us reconsider conservation of momentum

and energy. Consider a Lagrangian L with q1 cyclic:

∂L

∂q1
= 0.

Consider the following transformation:

qi(α) = qi + αδi1.

This is a translation of q1. The infinitesimal transformation is (exercise)

δqi = δi1.

In this case the total derivative term does not appear, i.e., G = 0:

δL = 0.

We get (exercise)

Q =
∑
j

∂L

∂q̇j
δ1j

= p1.

Next consider conservation of energy. For conservation of energy to hold we must

assume that ∂L
∂t = 0. The infinitesimal symmetry is

δqi = q̇i.

This transformation can be viewed as a time translation since on a curve qi(t), infinitesi-

mally, (exercise)

qi(t+ ε) ≈ qi(t) + ε
dq(t)

dt
.

That this is a Lagrangian symmetry when ∂L
∂t = 0 is easily seen:

δL =
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

=
dL

dt
.

The last equality follows from the assumption that the Lagrangian has no explicit time

dependence. We conclude that δqi = q̇i is a Lagrangian symmetry in which the total

derivative function is given by G = L. Applying Noether’s theorem we get (exercise)

Q =
∂L

∂q̇i
q̇i − L = E.
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Symmetries and Conservation Laws

As an exercise you can use Noether’s theorem to re-derive the relation between rota-

tional symmetry and conservation of angular momentum.

Finally, we remark we do not need to have (explicitly) a cyclic coordinate to get a

conservation law. We just need an infinitesimal transformation for which the Lagrangian

only changes by a total time derivative. For example, consider a particle moving in a

central force field:

L =
1

2
m~̇r

2 − U(|~r|).

Working in Cartesian coordinates, all 3 coordinates appear in U :

U = U(

√
x2 + y2 + z2).

However, the following infinitesimal transformation is a symmetry (exercise)

δx = −y, δy = x.

This is an infinitesimal rotation about the z axis. From Noether’s theorem, the corre-

sponding conserved quantity is

Q = (mvx)(−y) + (mvy)(x) = (~r × ~p)z,

which is the z component of angular momentum. As an exercise you can figure out the

symmetries for the other 2 components.

The next problem gives an example where you can use Noether’s theorem to obtain a

constant of motion which depends explicitly upon the time.

Homework Problem

Consider a closed system of Newtonian particles interacting pairwise by central forces.

Show that this system admits a boost symmetry, corresponding to transformation to a

new inertial reference frame moving with constant relative velocity ~V , i.e., the position of

each particle is transformed according to

~r → ~r + ~V t.

Use Noether’s theorem to compute the corresponding conserved quantities. What is their

physical interpretation?
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