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Variational Principles

A great deal of what we shall do in this course hinges upon the fact that one can de-

scribe a wide variety of dynamical systems using variational principles. You have probably

already seen the Lagrangian and Hamiltonian ways of formulating mechanics; these stem

from variational principles. We shall make a great deal of fuss about these variational for-

mulations in this course. I will not try to completely motivate the use of these formalisms

at this early point in the course since the motives are so many and so varied; you will see

the utility of the formalism as we proceed. Still, it is worth commenting a little here on

why these principles arise and are so useful.

The appearance of variational principles in classical mechanics can in fact be traced

back to basic properties of quantum mechanics. This is most easily seen using Feynman’s

path integral formalism. For simplicity, let us just think about the dynamics of a point

particle in 3-d. Very roughly speaking, in the path integral formalism one sees that the

probability amplitude for a particle to move from one place, r1, to another, r2, is given by

adding up the probability amplitudes for all possible paths connecting these two positions

(not just the classically allowed trajectory). The amplitude for a given path r(t) is of the

form e
i
h̄S[r], where S[r] is the action functional for the trajectory. The action functional

assigns a number to each path connecting r1 to r2. The specific way in which the action

assigns numbers to paths depends upon the physics (degrees of freedom, masses, potentials,

etc. ) of the system being considered. In a classical limit (usually when various parameters

characterizing the system are in some sense “macroscopic”) it can be shown that, due to

destructive interference of the phases e
i
h̄S[r] for most paths, the dominant paths in the

sum over paths come from critical (or “stationary”) points of the action functional. These

are paths which have the property that “nearby” paths do not change S[r] appreciably,

and this is the essence of a variational principle. The critical points of the action are

the classically allowed paths; we see that the derivation of classical equations of motion

from variational principles is preordained by quantum mechanics. This is a satisfying

state of affairs given the fact that classical mechanics can be viewed as a macroscopic

approximation to quantum mechanics.

Of course, the variational principles of mechanics (19th century) came much earlier

than quantum mechanics (1920’s), let alone Feynman’s path integral approach (1940’s).

This is a testament to the great minds (Euler, Lagrange, Hamilton, Jacobi, . . . ) that

found these variational principles! These principles came into favor because they provide
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a very powerful way to organize information about a dynamical system. In particular,

using a single quantity (the Lagrangian or the Hamiltonian) one can deduce (in principle)

essentially all aspects of a dynamical system, e.g., equations of motion, symmetries, con-

servation laws, . . . , even the basic strategy for building the associated quantum system.

In fact, modern approaches to modeling dynamical systems take the variational principle

as fundamental: we begin by building the Lagrangian or Hamiltonian for the system. As

mentioned before, one can think of the discovery of the variational principles of mechanics

as really a discovery of a footprint left on the macroscopic world of the quantum world.

Hopefully this is enough motivation to get us started, we shall see the power of the

variational principles of mechanics throughout this course.

A Simple Example: a Newtonian particle in one dimension

Before getting into the generalities, let us get a feel for what is going on with a simple

example. Let us consider a particle (or some other system with a one-dimensional configu-

ration space) moving in one dimension under the influence of a force. We parametrize the

configuration space with x ∈ R1, and the force is ~f = f(x, t)̂i. The equation of motion a

la Newton is then

mẍ(t) = f(x(t), t).

We note that all one-dimensional forces admit a potential energy function V (x, t) such

that

f(x, t) = −∂V (x, t)

∂x
.

(As an exercise you should prove this!) So the dynamical law can be written as

mẍ+
∂V

∂x
= 0.

We can derive this dynamical law from a variational principle as follows. We begin by

considering paths x(t), which range between fixed initial and final points, x1 at t = t1 and

x2 at t = t2, that is,

x(t1) = x1, x(t2) = x2.

For example,

x(t) =
t− t2
t1 − t2

x1 +
t− t1
t2 − t1

x2,

and

x(t) = x1 cos

(
π

2

t− t1
t2 − t1

)
+ x2 sin

(
π

2

t− t1
t2 − t1

)
,

are such paths. There are, of course, infinitely many paths connecting any given endpoints.

Note that these paths will not, in general, satisfy Newton’s second law for the given force.
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Next we define a functional S[x] on the set of paths described above. S[x] is called the

action functional; the action is a rule that associates a number to each path satisfying the

given boundary conditions. For the Newtonian particle of mass m moving in potential V

we define S[x] by

S[x] =

∫ t2

t1
dt

(
1

2
mẋ2(t)− V (x(t), t)

)
.

You will recognize the integrand, called the Lagrangian,* as the difference of kinetic (T (t))

and potential (V (t)) energies along the curve x(t),

S[x] =

∫ t2

t1
dtL(t) ,

L(t) = T (t)− V (t).

Given a curve, x(t), it is easy to see how to compute the number assigned by the action

functional to x(t) from the formula above: just compute L(t) for that curve and integrate.

As an example, suppose V (x, t) = mgx, i.e., we have a particle moving in a uniform

gravitational field. Let us evaluate the action for the path

x(t) =
t− t2
t1 − t2

x1 +
t− t1
t2 − t1

x2.

We get (exercise)

S =
m

t2 − t1

{
1

2
(x2 − x1)2 − 1

2
g(t2 − t1)2(x2 + x1)

}
.

You really should derive this result yourself to see what is going on.

We now consider the problem of finding critical points of the action functional S[x].

Recall from elementary calculus that the critical points x0 of a function f(x) are points

where the derivative of f vanishes: f ′(x0) = 0. What this means is that a small displace-

ment of x0 does not change the value of the function to first-order in the displacement.

To see this, just write out the Taylor series (exercise). So, if x0 is a critical point for the

function f we have

f(x0 + ε) = f(x0) + terms of order ε2.

Likewise we say that a curve x(t) is a critical point of S[x] if a small change in the function

does not alter the value of S[x] to first order in the change in the function. So, if a curve

x(t) is a critical point of the action, then if we change the curve, say, to x(t)+δx(t), where

* As we shall see, strictly speaking the Lagrangian should be viewed as a function on the ex-
tended velocity phase space. The integrand of the action integral is actually the Lagrangian
evaluated on a curve.
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δx(t) is just any arbitrary function (except for boundary conditions – see below) the action

should be unchanged to first order in δx.

Note: The function δx(t) is called the variation of x(t).

Recall we are considering paths that begin and end at some fixed points (x1 and x2).

And since x(t) is already assumed to have those endpoints, in order for the varied path

x(t) + δx(t) to have the correct boundary conditions the variation must satisfy

δx(t1) = δx(t2) = 0.

Let us now compute the change in action to first order in the variation. Computing to

first order in the variation we get (exercise)

S[x+ δx(t)] = S[x] +

∫ t2

t1
dt

(
mẋ(t)δẋ(t)− ∂V (x, t)

∂x

∣∣∣
x=x(t)

δx(t)

)
+O(δx2).

Notice that we have used Taylor’s theorem to expand the potential energy function along

the varied curve to first order in the variation. The strategy is now to see what conditions

the curve x(t) must satisfy so that the O(δx) term vanishes for any choice of δx(t).† To

this end, we integrate by parts in the first term of that integral; the endpoint terms do not

contribute because δx vanishes at the endpoints:∫ t2

t1
dtmẋ(t)δẋ(t) = mẋ(t2)δx(t2)−mẋ(t1)δx(t1)−

∫ t2

t1
dtmẍ(t)δx(t) = −

∫ t2

t1
dtmẍ(t)δx(t)

So we get for our critical point condition (good exercise)

−
∫ t2

t1

(
mẍ(t) +

∂V (x, t)

∂x

∣∣∣
x=x(t)

)
δx(t) dt = 0

Since this must hold for any function δx(t) in the interval t1 < t < t2 (subject to its

vanishing at the endpoints), it follows that the critical point x(t) must satisfy Newton’s

second law:

mẍ+
∂V (x, t)

∂x

∣∣∣
x=x(t)

= 0, t1 < t < t2.

This can be made quite rigorous given appropriate statements about the smoothness of the

functions being used. The idea of the proof is that we can choose δx(t) to be arbitrarily

well localized about any point t in the interval t1 < t < t2, and this forces the rest of the

† The order δx term is called the first variation of the action and is usually denoted by δS.
The critical point condition is thus expressed as δS = 0.
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integrand to vanish in an arbitrarily small neighborhood of that point. Continuity does

the rest.

To summarize: Newton’s second law (for a particle moving in 1-d) can be viewed as

arising from a variational principle:* Physical trajectories x(t) (obeying the second law)

are critical points of the functional S[x] =
∫
dtL, where L = T − V .

It is often asserted that the action is minimized by a curve satisfying the equations

of motion, but this is by no means necessary. As in ordinary calculus, the existence of a

critical point signals the existence of either a local maximum/minimum or a saddle point.

We can investigate this a bit further and show that the action is minimized by the path

obeying Newton’s second law provided the time interval T = t2 − t1 is sufficiently short.

Let’s briefly see how this goes.

For later simplicity, we set t1 = 0 and t2 = T . We can decide on the nature of the

critical point by expanding the action to second order in the variations. Granted that x(t)

is a critical point, we have

S[x+ δx] = S[x] + δ2S +O(δx3),

where δ2S is called the second variation of the action about the critical point. A simple

computation shows that, for the 1-d Newtonian system we have that (exercise)

δ2S =

∫ T

0
dt

1

2

[
m(δẋ)2 − f(t)δx2

]
,

where

f(t) =
∂2V (x, t)

∂x2

∣∣∣
x=x(t)

.

Our goal is to see if the second variation is positive, negative, or zero — corresponding to

x(t) being a local minimum, maximum, saddle point, respectively. To this end we assume

that f(t) is a continuous function of t; we then have the simple estimate

−
∫ T

0
dt

1

2
f(t)δx2 ≥ −C

∫ T

0
dt

1

2
δx2,

where the constant C is given by

C = sup
t

(f(t)).

Thus we have

δ2S ≥
∫ T

0
dt

1

2

[
m(δẋ)2 − Cδx2

]
,

* The term “variational principle” arises because we consider the change in the functional
as we vary the possible paths in the vicinity of a critical point.
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I think you can see that the kinetic energy term provides a positive contribution, while the

potential energy term can provide a negative contribution. Thus, in general, one cannot

assert that a minimum occurs. Still, we can say a bit more. Recall that δx is a function on

the interval [0, T ] which vanishes at the end points. We can express it as a Fourier series:

δx =
∞∑
n=1

an sin(
nπt

T
).

This gives (exercise)

δ2S ≥ T

4

∞∑
n=1

[
m(

nπ

T
)2 − C

]
a2
n.

For a given potential energy function C is a fixed constant. You can see from the above

expression that, given C, we can always pick T small enough such that the first term

in square brackets dominates the second. Thus for T sufficiently small we have that the

second variation is positive and x(t) defines a local minimum of the action functional.

Hamilton’s Principle

The variational principle used to obtain Newton’s second law for a particle moving in

one dimension is known as Hamilton’s principle. We now give a general version.

To a physical system described by generalized coordinates qi, i = 1, 2, . . . , n we asso-

ciate a Lagrangian, which is a function of 2n+ 1 variables:

L = L(qi, q̇i, t).

We have not evaluated this function on a curve yet! The t dependence indicated is only of

the “explicit” type. So, the Lagrangian is, in general, a time dependent function, i.e., a one

parameter family of functions, on the velocity phase space. Alternatively, the Lagrangian

can be viewed as a function on the extended velocity phase space.* How do we choose

the Lagrangian? For a Newtonian system, as we shall see, we take the difference between

kinetic and potential energies. In this case the challenge is to find a set of generalized

coordinates and to decide what is the correct potential energy function. More generally,

finding the correct Lagrangian is tantamount to finding the physically correct description

of the system. So, determining the Lagrangian is one of the essential arts of being a

* Many Lagrangians of physical interest do not in fact have any explicit t dependence, i.e.,

∂L

∂t
= 0.

For example, consider the Lagrangian for any conservative Newtonian dynamical system.
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physicist. We will, of course, explore a lot of standard Lagrangians so you can see how to

go about building them.

The action integral assigns a number to each curve qi = qi(t) joining the fixed end-

points,

qi(t1) = qi1, qi(t2) = qi2,

via

S[q] =

∫ t2

t1
L(qi(t), q̇i(t), t) dt.

Here we have evaluated the Lagrangian on the curve qi(t), so that the integrand has time

dependence of the explicit and implicit sort. We have chosen the Lagrangian to depend only

upon the curve and its tangent vector because, as we shall see, this leads to second-order

equations of motion, which are physically most relevant. Higher order equations of motion

can be accommodated by letting the Lagrangian depend upon higher order derivatives of

qi(t). You will explore this in a homework problem

Hamilton’s principle asserts that physical trajectories are those curves between q1 and

q2 which are critical points of the action integral. As in our simple example, we can derive

a differential equation that these trajectories must satisfy. We do this as follows.

We consider a variation in the putative critical curve:

qi(t) −→ qi(t) + δqi(t),

where δqi(t) is arbitrary except for the endpoint conditions

δqi(t1) = 0 = δqi(t2).

We next compute the first order change, δS, in the action,

δS[q] := S[q + δq]− S[q] to first order in δq.

Using multi-variable Taylor series, we get

L(q + δq, q̇ + δq̇, t) = L(q, q̇, t) +
∂L(q, q̇, t)

∂qi
δqi +

∂L(q, q̇, t)

∂q̇i
δq̇i +O(δq2).

Here we’ve introduced the Einstein summation convention wherein a subscript and super-

script with the same index label are to be summed, e.g.,

∂L

∂qi
δqi ≡

n∑
i=1

∂L

∂qi
δqi.

Thus the first order change in the action is given by

δS[q] =

∫ t2

t1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)
dt.
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There are a number of remarks we must make about this formula.

* In the formula for δS, the partial derivatives of the Lagrangian are taken while viewing

L as a function on the (extended) velocity phase space. The partial derivatives are

thus functions of the 2n + 1 variables qi, q̇i, and t. These functions are evaluated on

the curve, i.e., in the integral one substitutes

qi = qi(t), q̇i =
d

dt
qi(t).

For example (in the formula for the variation)

∂L

∂qi
δqi ≡ ∂L

∂qi

∣∣∣∣ q=q(t)

q̇=
dq(t)
dt

δqi(t),

with the same meaning for the second term in the formula. This makes the integrand a

function of t which can then be integrated. Henceforth we follow the standard practice

of omitting the notation which makes explicit where the functions of time are, i.e., we

are dropping all the “(t)” which we kept in our earlier example.

* Along similar lines, the variation δq̇i means either the change induced in the tangent

vector to qi(t) by the variation in the curve, or it means the time derivative of δqi(t).

These are the same thing (exercise):

δq̇i(t) = δ

(
d

dt
qi(t)

)
=

d

dt
δqi(t).

* We call δqi(t) the variation of the path (curve, trajectory, motion, etc. ) of the system

in configuration space. We call δS the first variation in the action induced by the

variation in qi(t).

* One can view δ as an operation – called “the variation” – which can be applied to

functionals A[q]. This operation can be defined by the procedure of expanding in

the variations as we did above. An equivalent, more elegant approach is as follows.

Consider a 1-parameter family of curves qi(α, t) containing the curve of interest qi(t),

where qi(0, t) = qi(t). As a simple example, you could take qi(α, t) = qi(t) + αδqi(t);

more complicated examples are easily constructed. Define

δqi(t) =
∂

∂α
qi(α, t)

∣∣∣
α=0

.

and

δA[q] =
d

dα
A[q(α)]

∣∣∣
α=0

.
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It is not hard to see that applying δ to A is the same as finding the change in A

obtained by evaluating A on q + δq and expanding to first-order in δq. For example,

with an action integral

S[q] =

∫ t2

t1
dtL(q, q̇, t),

we have

δS =
d

dα

[ ∫ t2

t1
dtL(q(α, t), q̇(α, t), t)

]
α=0

=

[ ∫ t2

t1

(
∂L(q(α, t), q̇(α, t), t)

∂qi
∂qi(α, t)

∂α
+
∂L(q(α, t), q̇(α, t), t)

∂q̇i
∂q̇i(α, t)

∂α

)
dt

]
α=0

=

∫ t2

t1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)
dt.

Let us return to our analysis of the variation of the action and the condition for a

critical point. As in our initial example, we now integrate by parts in the second term in

our formula for δS to get (exercise)

δS =
∂L

∂q̇i
δqi
∣∣∣∣t2
t1

+

∫ t2

t1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt.

The endpoint terms do not contribute because the variations in the curve vanish at the

endpoint. So we get

δS =

∫ t2

t1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt.

Hamilton’s principle can be expressed by the demand that the physical trajectory qi(t)

is such that, for all δqi(t),

δS[q] = 0.

This implies, as in our example,

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0.

These are the famous Euler-Lagrange equations (EL equations) for the physical trajectories.

Remarks:

* It is understood in the EL equations that the partial derivatives of L are evaluated on

the trajectory qi(t). Thus the EL equations are a system of n second-order differential

equations for the curve qi(t), not, e.g., equations for L as might appear from the way

9



The Action, the Lagrangian and Hamilton’s principle

the equation is written. We take the point of view that L is given and the curve is to

be found from the differential equations. The equations are second order and are of

the form
∂L

∂qi
− ∂2L

∂q̇i∂t
− ∂2L

∂q̇i∂qj
q̇j − ∂2L

∂q̇i∂q̇j
q̈j = 0.

The first three terms in this equation involve up to first derivatives of the curve. The

last term explicitly displays the second derivatives, with coefficients which depend on

up to first derivatives.

* We can check that when qi → x and

L =
1

2
mẋ2 − V (x, t)

that the EL equations reproduce the equations of motion obtained from Newton’s

second law.

We have
∂L

∂x
= −∂V

∂x
,

∂L

∂ẋ
= mẋ.

Hence
∂L

∂x
− d

dt

∂L

∂ẋ
= −∂V

∂x
−mẍ

as desired.

In 3 dimensions, with qi → r and

L =
1

2
mṙ2 − V (r, t)

the EL equations give the usual equations of motion.

mr̈ +∇V = 0.

To see this, just note that

∂L

∂x
= −∂V

∂x
,

∂L

∂y
= −∂V

∂y
,

∂L

∂z
= −∂V

∂z
,

and
∂L

∂ẋ
= mẋ,

∂L

∂ẏ
= mẏ,

∂L

∂ż
= mż,

and you can easily see that the three EL equations (one for each degree of freedom) give

Newton’s second law.

The total time derivative

The time derivative d
dt appearing in the EL equations is sometimes called the total

time derivative since it sees the implicit and explicit time dependence. More precisely, we

have (exercise)
d

dt

∂L

∂q̇i
=

∂2L

∂qj∂q̇i
q̇j +

∂2L

∂q̇j∂q̇i
q̈j +

∂2L

∂q̇i∂t
.
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Thus the EL equations are a system of second-order ordinary differential equations. (It is

not hard to handle Lagrangians which lead to higher-order differential equations. You will

explore this in your homework.)

This total time derivative bears some additional emphasis, as it pops up fairly often.

Given a function G(q, q̇, t) on the extended velocity phase space, we define the total time

derivative of G to be the function of coordinates, velocities, and accelerations, q̈ given by

d

dt
G(q, q̇, t) =

∂G

∂qi
q̇i +

∂G

∂q̇i
q̈i +

∂G

∂t
.

For example, for a system with one degree of freedom q, suppose

G(q, q̇, t) = sin q q̇3 + teq.

We have
∂G

∂q
= cos q q̇3 + teq,

∂G

∂q̇
= 3 sin q q̇2,

∂G

∂t
= eq,

and so
dG

dt
= 3 sin q q̇2q̈ + cos q q̇4 + eq + teq q̇.

On a given trajectory in configuration space, we have

qi = qi(t), q̇i =
d

dt
qi(t), q̈i =

d2

dt2
qi(t),

etc. If we evaluate dG/dt, as defined above, on the curve* we get (exercise){
d

dt
G(q, q̇, . . . , t)

}
q=q(t)

=

(
∂G

∂qi

)
q=q(t)

d

dt
qi(t)+

(
∂G

∂q̇i

)
q=q(t)

d2

dt2
qi(t)+. . .+

(
∂G

∂t

)
q=q(t)

.

This is, of course, just the ordinary time derivative of the function of t obtained by evalu-

ating G on the curve, but computed using the chain rule. Thus the total time derivative,

viewed as an operator on G(q, q̇, . . . , t), is designed to satisfy(
dG

dt

) ∣∣∣
q=q(t)

=
d

dt

(
G
∣∣∣
q=q(t)

)
.

As a nice exercise you can check in our little example above that this is indeed what

happens.

* This means substituting

qi = qi(t), q̇i =
d

dt
qi(t), q̈i =

d2

dt2
qi(t), etc.

which we schmatically denote as “q = q(t)” in the following formulas.
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The idea behind the total time derivative is that G(q, q̇, . . . , t) is some physical quantity

describing the system (e.g., the force, or the total energy). This quantity may change in

time by its definition – this is the explicit time dependence. The total time derivative gives

a formula for the rate of change of G in terms of positions, velocities, etc. valid as we move

along a given curve. As we mentioned before, the change in G then comes from two sources

(i) the fact that G changes in time by its definition (“explicit time dependence”) and the

fact that G will also change as we move along a curve because the position, velocity, etc.

are changing in time (“implicit time dependence”).

Lack of uniqueness of the Lagrangian

Since we only use the Lagrangian to compute the equations of motion via the EL equa-

tions, the Lagrangian is not uniquely specified by the equations of motion.* In particular

there are a number of changes we can make to a Lagrangian without altering the content

of the equations of motion.

There are two ways to modify a Lagrangian which are pretty simple. They stem

from the fact that the EL equations are obtained from a formula which is constructed

by applying a linear differential operator (in the extended velocity phase space) to the

Lagrangian. First, if we add a constant to the Lagrangian the EL equations do not change.

This is because the EL equations only involve derivatives of the Lagrangian. Second, it is

easy to see that if we multiply the Lagrangian by a constant, L→ cL, the Euler-Lagrange

equations of motion get multiplied by an overall constant (the EL equations are built

linearly from the Lagrangian), which does not disturb the meaning of the equations of

motion (exercise).

A less trivial way to change a Lagrangian is as follows. Given a Lagrangian L(q, q̇, t)

for each function f(q, t), we can make a new Lagrangian L̃(q, q̇, t) via

L̃(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t).

The EL equations coming from L̃ are identical to those coming from L. You can understand

this result from the variational principle point of view – the two action functionals, S and

S̃ defined by the Lagrangians L and L̃ have the same critical points. This is because

(exercise)

S̃ = S + f(q2, t2)− f(q1, t1),

and hence

δS̃ = δS + δf(q2, t2)− δf(q1, t1).

* This is reasonable: the Lagrangian is ultimately a quantum mechanical object – the clas-
sical limit does not determine the quantum system uniquely.

12
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But

δf =
∂f

∂qi
δqi,

and the endpoints are fixed,

δq1 = δq2 = 0,

so that

δS̃ = δS

thanks to the endpoint conditions on δqi(t) (exercise). Thus, adding a total time derivative

to the Lagrangian will not change the critical points and has no effect on the EL equations

obtained via Hamilton’s principle. In your homework you will see this another way. You

will show that the EL equations, computed directly from L(q, q̇, t) and from

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t),

are the same. Put differently, the EL expression for the Lagrangian L = df
dt vanishes

identically.

Coordinate Invariance of EL Equations

There is an even bigger type of non-uniqueness of the Lagrangian. Any two Lagrangians

which are related by a change of coordinates in configuration space will give equivalent EL

equations. Another way to view this is to say that the EL equations can be computed in

any set of generalized coordinates and they are guaranteed to be correct. This is a very

useful result, as we shall see.

To see the non-triviality of the statement, let us compare the Lagrangian situation

to the Newtonian one. In the Lagrangian description of a Newtonian system, you simply

choose your favorite generalized coordinates, express L = T −V in terms of them and com-

pute the EL equations. The Lagrangian can, of course, have a variety of functional forms

depending upon your choice of coordinates. But it is always T −V , and the equations you

get are the correct ones (as you prove in your homework). In the Newtonian description,

one determines the force and uses Newton’s second law. But Newton’s second law is only

valid in an inertial reference frame. Mathematically, the transformation to a non-inertial

reference frame can be viewed as a change of generalized coordinates. For example, for a

reference frame (x1, x2, x3) rotating uniformly about the z-axis we get (exercise).

x1 = x cosωt+ y sinωt,

x2 = y cosωt− x sinωt,

x3 = z.

13
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You can (should!) check that the inverse of this transformation is

x = x1 cosωt− x2 sinωt,

y = x2 cosωt+ x1 sinωt,

z = x3.

With this change of coordinates you can’t really use ~F = m~a as usual. For example,

suppose that the particle is isolated (i.e., does not interact with anything), so that ~F = 0.

In an inertial reference frame we get the equation of motion for the curve

~r(t) = (x(t), y(t), z(t))

given by
d2~r(t)

dt2
= 0.

The equations of the curve in the non-inertial frame, ~x = (x1(t), x2(t), x3(t)) cannot be

constructed directly from Newton’s second law since ~F = 0, but

d2~x(t)

dt2
6= 0

in this reference frame. So, in general, you can’t just make arbitrary coordinate transfor-

mations and keep using ~F = m~a.

On the other hand you can make such transformations in the Lagrangian. For the free

particle Lagrangian we have

L =
1

2
m(ẋ2 + ẏ2 + ż2)

=
1

2
m
[
(ẋ1)2 + (ẋ2)2 + (ẋ3)2

]
+

1

2
mω2[(x1)2 + (x2)2] +mω(x1ẋ2 − x2ẋ1)

= L̃(~x, ~̇x).

As a nice exercise you should compute the EL equations for ~x(t) from L̃ and verify that,

dividing out an overall factor of m, they are equivalent to

ẍ1 − ω2x1 + 2ωẋ2 = 0

ẍ2 − ω2x2 − 2ωẋ1 = 0,

ẍ3 = 0

which is precisely what you’d get from combining (i) the definition of the rotating reference

frame with (ii) ~̈r = 0.
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A more geometric way to express the rotating reference frame equations of motion is

as follows. Introduced an orthonormal basis (ê1, ê2, ê3) such that the position vector is

~x = x1ê1 + x2ê2 + x3ê3. Set ~Ω = ωê3. The EL equations of motion are then

~̈x = 2~Ω× ~̇x− ~Ω× (~Ω× ~x).

The first term on the right hand side is the Coriolis term, and is responsible for the

Coriolis effect, which you may have heard of. The second term on the right hand side is

the centrifugal term, and is the origin of the term “centrifugal force”.

Let me be more precise about what it means to change coordinates in the Lagrangian.

Suppose you compute the EL equations in one system of coordinates qi, as we have de-

scribed. Suppose somebody else computes using a different set of coordinates, say, q̃i.

For example, we could use the inertial and rotating coordinates defined above. The two

coordinate systems will be related by equations of the form:

q̃i = f i(q, t), qi = gi(q̃, t).

The velocities are then related by (exercise)

˙̃qi =
∂f i

∂qj
q̇j +

∂f i

∂t
,

and

q̇i =
∂gi

∂q̃j
˙̃qj +

∂gi

∂t
.

The two coordinate systems will yield two different Lagrangians, L(q, q̇, t) and L̃(q̃, ˙̃q, t).

The Lagrangians will be related via

L̃(q̃, ˙̃q, t) := L(q(q̃, t), q̇(q̃, ˙̃q, t), t).

The key point is that if qi = qi(t) solves the EL equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0,

then

q̃i(t) = f i(q(t), t)

will satisfy
∂L̃

∂q̃i
− d

dt

∂L̃

∂ ˙̃qi
= 0.

The reason is that we have the identity:

∂L

∂qk
− d

dt

∂L

∂q̇k
=

[
∂L̃

∂q̃i
− d

dt

∂L̃

∂ ˙̃qi

]
∂f i

∂qk
.
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This coordinate invariance of the EL equations stems from the fact that the curves in

configuration space which are critical points of the action are critical points irrespective

of how they are mathematically represented. This is a distinct practical advantage of

the EL equations; they facilitate the use of non-trivial coordinate systems to compute

the equations of motion. We shall study several examples shortly. You will prove this

invariance of the equations in the homework.
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