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Simultaneous Diagonalization of Quadratic Forms. Forced Oscillations.

Relevant Sections in Text: §6.1–6.3, 6.5

A Nice Mathematical Interpretation of Normal Modes: Simultaneous diago-
nalization of quadratic forms

It is worthwhile giving an alternative description of the derivation of normal modes and
characteristic frequencies. This alternative description involves the notion of simultaneous
diagonalization of quadratic forms. The idea is that the construction of the normal modes
amounts to diagonalizing the matrices K and M , and the characteristic frequencies are
coming from the diagonal entries of these matrices. As we shall see, strictly speaking, K
and M are better thought of as quadratic forms— equivalently, symmetric tensors. One
payoff of this slightly more sophisticated point of view is that it explains why we always
get a basis of eigenvectors for M−1K and hence why any motion of the dynamical system
near equilibrium can be viewed as a superposition of the normal modes..

Recall that M can be viewed as assigning a number M(~v) (twice the kinetic energy)
to a vector ~v (a velocity) via

M(~v) = Mijv
ivj .

The vectors (displacements, velocities) etc. are elements of a vector space. Denote the
basis for the vector space as ~ei, i = 1, 2, . . . , n. Consider a change of basis ~ei → ~e ′i in which
the components of the vector ~v change via

vi → vi′ = Λijv
j .

In a matrix notation:
v′ = Λv.

The kinetic energy — a physically observable quantity — cannot change under a change
of basis; the components of M must therefore change as (exercise)

M ′ij = Ski S
l
jMkl,

or, in matrix notation,
M ′ = STMS,

where S = Λ−1. This type of transformation of a matrix is called a congruence transfor-
mation.

Note that this is not the same transformation rule as that of a matrix representing a
linear operator. A matrix L representing a linear operator transforms under a change of
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basis as a similarity transformation: L → S−1LS. Thus a quadratic form (equivalently,
a symmetric rank 2 tensor) is not the same as a linear operator. If the change of ba-
sis is an orthogonal transformation, for which ST = S−1, then the distinction between
transformation properties disappears.

Because the quadratic form M is positive definite, we can use it to define a scalar
product:

(~v, ~w) ≡M(~v, ~w) = Mijv
iwj .

Exercise: Show that this does define a scalar product.

As you know, we can always find an orthonormal basis for a vector space with scalar
product. Thus we can always find a basis ~ei for which

M(~ei, ~ej) = δij .

In this basis the kinetic energy is a sum of squares (exercise):

M(~v) = (v1)2 + (v2)2 + . . .+ (vn)2.

Thus we have “diagonalized” the quadratic form defined by M .

Under the change to an orthonormal basis with respect to the scalar product defined
by M , the matrix K representing the potential energy quadratic form will change by
a congruence transformation to some other matrix, not necessarily diagonal. We now
consider making a further change of basis characterized by a matrix S that keeps M
unchanged from its diagonal form but which diagonalizes K. This change of basis that
preserves M must be an orthogonal transformation since in the current basis

STMS = M =⇒ STS = I.

Under an orthogonal transformation the symmetric matrix K transforms via similarity
transformation. But it is a standard result from linear algebra that every symmetric
matrix can be diagonalized by a similarity transformation with an orthogonal matrix.
Note, however, that this result does not allow us to turn K into the identity matrix, only a
diagonal matrix. Thus we can always simultaneously diagonalize any two quadratic forms,
provided one of them is positive definite so that it can be used to define a scalar product.

Here is a slightly different point of view of the last step in which K is diagonalized.
In the basis in which M is the identity matrix but K is not yet diagonalized, our original
computation of the characteristic frequencies and normal modes comes from solving

(ω2I −K)~a = 0,
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where K is the matrix computed arising from the congruence transformation that made
M the identity. Evidently, in this basis we are just solving

K~a = ω2~a,

i.e., the eigenvalue problem for K in this basis. Finding the rotation which diagonalizes
K is then essentially equivalent to solving this eigenvalue problem since the eigenvectors
define an orthonormal basis in which K is diagonal.

A nice – if somewhat abstract – way to summarize this result is that M defines an
inner product relative to which M−1K is symmetric. Every symmetric operator on an
inner product space admits a basis of eigenvectors. Finding these eigenvectors amounts to
finding the normal modes.

This way of doing the analysis also has the virtue of making it clear the solutions one
gets (vectors and frequencies) define a basis for the vector space. This guarantees that all
solutions of the EL equations can be obtained from the normal modes by superposition.

When we work in the basis in which the two quadratic forms M and K are diagonal, we
are using the directions defined by the normal modes to define new generalized coordinates.
More precisely, if we make a change of generalized coordinates by making a change of
basis that diagonalizes M and K as described above, then in this system of generalized
coordinates (denoted Qα, α = 1, . . . , n) the Lagrangian will have the form (exercise):

L =
1
2

n∑
α=1

(
Q̇α2 − ω2

αQ
α2
)
.

The relation between the Qα and the normal modes Θα defined earlier is that the former
are normalized so that the kinetic energy is just a sum of squares.

The relation between the normal modes Qα and the original coordinates xi is as follows.
Let the original vector space basis be denoted by ~bi, i = 1, 2, . . . , n, and let the basis which
diagonalizes M and K be denoted by ~eα (these are the normalized eigenvectors). We have
the change of basis matrices

~bi = Sαi ~eα, ~eα = Siα~ei.

We have
~x = xi~bi = Qα~eα,

so that
xi = SiαQ

α.

Forced Oscillations

A typical scenario in which small oscillations is relevant is where one has a system
in stable equilibrium which is subjected to an external force ~F which moves the system
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from equilibrium. We allow this force to be time dependent. This introduces an additional
potential energy term V1 to the quadratically approximated Lagrangian given by

V1 = −~F (t) · ~x.

Using the normal modes of vibration, the motion of the system can be reduced to a
collection of uncoupled – but now forced – oscillators. Indeed, let us relate the original
vector space basis, say ~bi, to that provided by the normal modes, ~eα by the change of basis
matrix S:

~bi = Sαi ~eα, ~eα = Siα
~bi.

We then have
~x = xi~bi = Qα~eα,

where
Qα = Sαi x

i,

and
V1 = −Fi(t)xi = −Fα(t)Qα,

where
Fα(t) = SiαFi(t).

So the Lagrangian takes the form

L(Q, Q̇, t) =
1
2

n∑
α=1

(
Q̇α2 − ω2

αQ
α2 + Fα(t)Qα

)
.

We have n uncoupled, forced oscillators. Evidently we need only understand how to handle
a single forced oscillator to handle the general case.

We thus consider the Lagrangian

L =
1
2
mẋ2 − 1

2
kx2 + xF (t),

where k > 0. The equations of motion are that of a harmonic oscillator subjected to an
external, time varying force F (t) (exercise):

ẍ+ ω2x =
F (t)
m

.

Of course, we must assume that F remains suitably small so that the solutions do not
violate the approximation needed for their validity.

This inhomogeneous differential equation can be directly integrated as follows. Define

ξ(t) = ẋ(t) + iωx(t).
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In terms of this complex variable the equation of motion takes the form (exercise)

ξ̇ − iωξ =
F (t)
m

.

You can easily see that, when F = 0, the solution is of the form Aeiωt, where A is a
constant. So try a solution of the form

ξ(t) = A(t)eiωt.

Plugging into the ODE, we find that A satisfies

Ȧ = e−iωt
F (t)
m

,

which has solution (exercise)

A(t) =
∫
dt

1
m
F (t)e−iωt + constant.

Putting this all together, we see that the general solution of the forced oscillator equation
is (exercise)

x(t) =
1
ω
Im(ξ(t))

=
1
ω
Im

[
eiωt(B +

∫
1
m
F (t)e−iωt dt)

]
,

where B is an arbitrary complex constant.

As an example, suppose that

F (t) = f cos(γt).

Then, provided γ2 6= ω2, the general solution is of the form (exercise)

x(t) = a cos(ωt+ α) +
f

m(ω2 − γ2)
cos(γt),

where a and α are real constants. We see that in this case the motion is a superposition
of two oscillations at the two frequencies ω and γ inherent in the problem. The relative
importance of the forced oscillation component depends, of course, on the the size of f ,
but also on the relative magnitudes of ω and γ.

When ω → γ the forced oscillation amplitude diverges and our form of the solution
given above becomes invalid; this situation is called resonance. To get the correct solution
in this case we set γ = ω in our integral expression or the general solution. We then get a
solution of the form (exercise)

x(t) = a cos(ωt+ α) +
f

2mω
t sinωt,
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where, again, a and α are constants. Note the linear growth in t, which eventually destroys
the harmonic approximation.

We can get a useful picture of the behavior of the system near resonance by an ap-
proximation scheme. Let

γ = ω + ε,

where ε << ω. Write the general solution for x(t) (off resonance) in the complex form
(exercise):

ξ(t) ≈ (A+Beiεt)eiωt.

Over one period, 2π
ω , the amplitude C = |A+Beiεt| changes very little. Thus the motion

is approximately that of free oscillation with a slowly varying amplitude. In particular,
the amplitude is of the form (exercise)

C =
√
a2 + b2 + 2ab cos(εt+ φ),

where A = aeiα, B = beiβ , and φ = β − α. Thus the amplitude varies (slowly) between
the values |a+ b| and |a− b|. The oscillatory behavior is said to exhibit “beats”.

Typically, a general force F (t) can be Fourier analyzed into sinusoidal components.
Likewise, we can Fourier analyze the solution x(t). We can view the above example as
illustrating the behavior of a typical Fourier component. The general motion of the system
is then a superposition of motions such as given above (exercise).

Finally, let us note that since the Lagrangian for a system executing forced oscillations
is explicitly time dependent (provided dF

dt 6= 0), there will be no conservation of energy
for the oscillator. This should not surprise you, since the oscillator is clearly exchanging
energy with its environment. We can compute the energy transferred during a time interval
(t1, t2) by noting that the oscillator energy can be written as

E =
1
2
m(ẋ2 + ω2x2) =

1
2
m|ξ|2,

and then using our explicit formula for ξ(t),

ξ = eiωt(B +
∫ t

0

1
m
F (t)e−iωt dt)

to compute the energy at time t. For example, let us suppose that the system is at
equilibrium before t = 0, a force acts for a period of time after t = 0 after which the
force is zero again. Then B = 0 and the change in the oscillator energy can be written as
(exercise)

∆E =
1

2m

∣∣∣∣∫ ∞−∞ F (t)e−iωt dt
∣∣∣∣2 .
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Thus, the energy transfer is controlled by the absolute value of the Fourier component of
the force with frequency ω. If the time during which the force acts is small compared to
1
ω , then eiωt is approximately constant in the integral, and hence

∆E ≈ 1
2m

∣∣∣∣∫ ∞−∞ F (t) dt
∣∣∣∣2 .

Here the change in energy is controlled solely by the impulse imparted by the force since
the time scale is so short that no appreciable change in potential energy occurs while the
force acts. In the limit where

F (t) = fδ(t− t0),

this approximation becomes exact (exercise).

Homework Problem

Consider an oscillator with mass m and natural frequency ω, initially at rest, which

undergoes a constant force F0 for a finite period of time T . Show that after the force ceases

(t > T ) the system is oscillating harmonically. Determine the amplitude of this oscillation.

Your answer should (only) depend upon F0,m, ω, T .
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