
Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum

Physics 6010, Fall 2010

Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum

Relevant Sections in Text: §2.6, 2.7

Symmetries and Conservation Laws

By a conservation law we mean a quantity constructed from the coordinates, velocities,
accelerations, etc. of the system that does not change as the system evolves in time. When
the equations of motion are second order, conservation laws typically arise as functions
on the velocity phase (possibly with explicit time dependence). Conservation of energy,
momentum and angular momentum are familiar examples. Conservation laws are also
known as “constants of the motion”. They are allso called “first integrals” of the equations
of motion. We will see why a little later.

For example, consider a harmonic oscillator in one dimension. Let the generalized
coordinate be x. The Lagrangian is

L(x, ẋ) =
1
2
mẋ2 − 1

2
kx2,

where m, k are constants. The equation of motion is of the form

mẍ+ kx = 0.

The energy is given by

E(x, ẋ) =
1
2
mẋ2 +

1
2
kx2.

The energy is conserved because we have the identity

dE

dt
= ẋ(mẍ+ kx),

so that, when E is evaluated on a solution x = x(t) to the equations of motion, the
resulting function E(t) ≡ E(x(t), dx(t)

dt ) satisfies dE(t)
dt = 0. Indeed, the general solution to

the equation of motion is
x(t) = A cos(ωt+ α),

where A and α are constants (determined, e.g., by initial conditions) and ω =
√

k
m . We

then have
E(x(t),

dx(t)
dt

) =
1
2
kA2,

which is indeed time independent.

I do not think I need to impress upon you the importance of conservation laws in
physics. On the practical side, one can use conservation of energy, momentum, etc. to
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unravel many aspects of the motion of a system without having to explicitly integrate the
equations of motion. Indeed for systems with one degree of freedoms, a conservation law
usually determines everything! More generally, if there are enough conservation laws it
is possible to completely solve for the motion. On the other hand, I cannot emphasize
enough the fact that almost all dynamical systems are not simple enough for us to study
their motion by integrating the equation of motion, i.e., there are usually not enough
conservation laws to completely determine the motion. Still, even in these cases, the
conservation laws provide some of the principal clues we have as to the dynamical behavior
of such systems. At a deeper level, we use conservation laws to guide us in our quest to
find what are the physical laws governing the universe. Throughout the history of physics
we have repeatedly revised our formulation of the laws of nature. The current state of the
art involves the “standard model” of strong and electroweak forces along with Einstein’s
general theory of relativity for the gravitational force. In building these theories, the
myriad of conservation laws observed in nature* form the foundation for the work of the
theoretical physicist. It is reasonable to suppose that future generations of physicists will
further revise our theory of matter and interactions of matter, but it much less likely that
these theories will not incorporate conservation laws.

One of the principal advantages of the Lagrangian formulation of mechanics (and its
field theoretic generalizations) is the ease with which one can understand the existence of
conservation laws. The fundamental result we want to explore now is that the existence of
conservation laws stems from the existence of symmetries of the Lagrangian.

Translation Symmetry and Conservation of Momentum.

Let us begin by noting a very easy result: when a (generalized) coordinate does not
appear in the Lagrangian, then a conserved quantity results. When a coordinate, q1 say,
is absent in the Lagrangian we say that q1 is cyclic or ignorable. In this case we have

∂L

∂q1 = 0.

The EL equation for the q1 degree of freedom is then simply (exercise)

d

dt

∂L

∂q̇1 = 0,

which says that the quantity ∂L
∂q̇1

is conserved. For a Newtonian particle for which the

qi are the Cartesian coordinates of the particle, the conserved quantity resulting from a

* Of course there is energy, momentum and angular momentum, but recall we also have
conservation of charge, baryon number, lepton number, weak isopsin, strangeness, charm,
etc.
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cyclic coordinate is just the corresponding component of the usual Newtonian momentum
(exercise). This motivates the following definition. For a given degree of freedom, qi, the
quantity

pi(q, q̇, t) =
∂L

∂q̇i

is called the canonical momentum conjugate to qi. We see that if qi is cyclic, its conjugate
momentum is conserved.

Note that if we define Ei as the EL expressions,

Ei(q, q̇, q̈, t) :=
∂L

∂qi
− d

dt

∂L

∂q̇i
,

then the conservation law associated with cyclic q1 follows from the identity

d

dt
p1 = E1.

If a coordinate, say, q1, is cyclic, this obviously implies that the Lagrangian is invariant
under translations of this coordinate (because the Lagrangian doesn’t depend upon that
coordinate!):

L(q1 + constant, q2, . . . , q̇1, q̇2, . . . , t) = L(q1, q2, . . . , q̇1, q̇2, . . . , t).

Thus translation in the q1 coordinate does not change the form of the Lagrangian. We say
that translation in q1 is a symmetry of the Lagrangian, or that the Lagrangian is invariant
under translations in q1. So, invariance of the Lagrangian with respect to translations in
the qi coordinate leads to conservation of the canonical momentum pi. Note that the EL
equations will not depend upon q1 either, so that they are the exact same equations no
matter what values q1 takes — the equations are invariant under translations in q1. We
say that translations in q1 are a symmetry of the EL equations. But it is the symmetry of
the Lagrangian which leads to the conservation law.*

As mentioned above, the choice of the term “momentum” to describe pi stems from
the fact that for Lagrangian for a system of Newtonian particles:

L =
1
2
m(1)~̇r

2
(1) +

1
2
m(2)~̇r

2
(2) + . . .− V (~r(1), ~r(2), . . . , t),

we have (exercise)
~p(i) = m(i)~̇r(i).

* In general, every symmetry of the Lagrangian is a symmetry of the equations of motion.
But the converse is not true.
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We will call m(i)~̇r(i) the mechanical momentum of the ith particle. For system of particles
moving under the influence of a potential via Newton’s second law, the Cartesian com-
ponents of the canonical momenta are the same as that of the mechanical momenta. If
the Lagrangian is invariant under a translation of one of the coordinates, this means the
potential energy is likewise invariant, and conversely (exercise). It is clear why this leads
to a conservation law from the Newtonian point of view: if the potential is translationally
invariant in a certain direction, then its derivative in that direction – which gives the force
in that direction – vanishes, leaving the corresponding momentum component unchanged
in time.

When we use generalized coordinates to define the configuration of the system it is
possible that the canonical momentum is not what you would usually call the mechanical
momentum. Moreover, one may have translational symmetries which do not manifest
themselves via cyclic coordinates. For example, consider a particle moving in 3-d under
the influence of a central force derivable from the potential energy V = V (|~r|). Because
of the spherical symmetry of the problem, it is natural to use spherical polar coordinates;
the Lagrangian is (exercise)

L =
1
2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)− V (r).

Clearly the coordinate φ is cyclic. The resulting conservation law is

d

dt
pφ = 0,

where
pφ =

∂L

∂φ̇
= mr2 sin2 θφ̇.

In this case the conserved quantity is the z-component of angular momentum. More on
this shortly.

It is instructive to consider the special case V = 0 in spherical polar coordinates.
Of course, in Cartesian coordinates the Lagrangian is translationally invariant in each of
(x, y, z). That translational symmetry still exists in spherical polar coordinates, it is just
not apparent. We will see how to think about this issue shortly.

Another important case where the mechanical and canonical momenta differ—even for
Cartesian coordinates—occurs for particle motion in a prescribed electromagnetic field.
Recall that the Lagrangian is

L =
1
2
m~̇r

2 − qφ+
q

c
~A · ~̇r.

The canonical momentum is, in vector notation, (exercise)

~p(~r, ~̇r, t) = m~̇r +
q

c
~A(~r, t).
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The canonical momentum in this case need not have immediate physical significance since
it depends upon the choice of vector potential, which is not uniquely determined by a given
electromagnetic field. Still, it is the canonical momentum which will be conserved when a
coordinate is cyclic.*

To summarize, if a coordinate does not appear in the Lagrangian, i.e., the Lagrangian
admits a tranlslational symmetry in a coordinate, its conjugate momentum will be con-
served.

Time translation Symmetry and Energy Conservation

We consider a system with generalized coordinates qi and Lagrangian

L = L(q, q̇, t).

We assume that L is unchanged by a time translation:

L = L(q, q̇) ⇐⇒ ∂L

∂t
= 0.

This lack of explicit t dependence means the Lagrangian is the same function on the velocity
phase space for all time. This also implies the equations of motion are the same differential
equations for all time t (exercise).* Thus we say that such systems admit a time translation
symmetry.

Now consider the restriction of the Lagrangian to a curve qi(t) satisfying the EL equa-
tions. Denote this restriction by L(t):

L(t) := L(q(t),
dq(t)
dt

).

The dependence of L on time comes solely through its dependence on qi(t) and q̇i(t). Thus,
on such a curve, (exercise)

dL(t)
dt

=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i,

where it is understood that all quantities on the right hand side of the equation are eval-
uated on the curve. On a curve satisfying the EL equations we have

∂L

∂qi
=

d

dt

∂L

∂q̇i
.

* Also, it turns out that it is the canonical momentum which is to be represented by a
derivative operator in the position representation of quantum mechanics.

* Such equations, with no explicit dependence on the independent variable, are called autonomous.
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So, assuming the curve qi(t) satisfies the EL equations, we have

dL

dt
=
(
d

dt

∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

=
d

dt

(
∂L

∂q̇i
q̇i
)
.

We conclude that, when evaluated on solutions qi(t) of the EL equations, we have the
result:

d

dt

(
∂L

∂q̇i
q̇i − L

)
= 0.

This leads us to define the canonical energy E(q, q̇, t) of a system described by the La-
grangian L(q, q̇, t) as

E(q, q̇, t) =
∂L

∂q̇i
q̇i − L.

Our result is that, when ∂L
∂t = 0, and when evaluated on a curve satisfying the equations

of motion, the canonical energy is conserved:

d

dt
E(q(t), q̇(t)) = 0.

We can express energy conservation as an identity which holds when the Lagrangian
does not depend upon time. For a general Lagrangian L = L(q, q̇, t) we have (exercise)

d

dt
E = −q̇i

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
− ∂L

∂t
.

From this identity you can see that E, when viewed as a function on velocity phase space is
unchanged as you move along a curve satisfying the EL equations provided the Lagrangian
has no explicit time dependence.

The use of the familiar term “energy” to label this conservation law stems from the
fact that for the usual type of Newtonian system the quantity E(q, q̇, t) corresponds to our
familiar definition of energy. For example, a particle moving in a given potential has the
Lagrangian

L =
1
2
m~̇r

2 − V (~r, t).

We have – using Cartesian coordinates (exercise)

∂L

∂ẋi
ẋi = mẋiẋ

i = 2T,

so that
E = 2T − (T − V ) = T + V.
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Thus we recover the usual definition of energy as the sum of kinetic and potential energies.
We learn, then, that this quantity is conserved for a particle moving in a given potential
provided the potential is time independent.

More generally, whenever L = T −V and the kinetic energy T (q, q̇, t) is a homogeneous
function of degree two in the velocities, we have that (exercise)

∂L

∂q̇i
q̇i = 2T,

and hence,
E = T + V.

It should be noted that, unless the above requirement is satisfied, the conserved quantity
associated with time translation invariance of a Lagrangian need not be the mechanical
energy T + V . In particular, it is possible that the canonical energy is conserved, but is
not the mechanical energy. Conversely, the mechanical energy might be conserved, but
need not in general be the same as the canonical energy.

Rotational Symmetry and Conservation of Angular Momentum

Here we demonstrate that rotational symmetry of a Lagrangian leads to conservation
of angular momentum. You have already seen an example of this: the particle moving in a
central force has the spherical coordinate φ as a cyclic variable. The conjugate momentum
that is conserved is the z component of angular momentum. The kinetic energy is invariant
under rotations about any axis; for a central force the potential energy V = V (r) and
hence the Lagrangian L = T −V is invariant under rotations about any axis. This implies
that we can choose the z-axis along any direction and the corresponding component of
angular momentum will be conserved. Thus all components of angular momentum will be
conserved for a particle moving in a central force. More generally a Lagrangian which is
rotationally invariant about some axis will have the total angular momentum along that
axis conserved. In what follows we show this directly.

Let us begin with the Lagrangian for a single particle, L(~r, ~̇r, t). We want to impose the
condition that the Lagrangian is rotationally invariant in order to see the consequences.
Thus we need to get a mathematical handle on how the position and velocity of a par-
ticle change under rotations. Recall that to specify a rotation one needs to pick an axis
of rotation and an angle. Given these data, one can write down formulas for how vec-
tors transform. For simplicity, we use a very important strategy: focus on infinitesimal
rotations. The idea is that finite rotations can be built up by “many” infinitesimal trans-
formations. In particular, a Lagrangian is invariant under rotations about some axis if and
only if it is invariant about infinitesimal rotations about that axis.
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We consider the change δL in the Lagrangian produced by an infinitesimal rotation
around an axis defined by the unit vector ~n by an angle ε << 1. First, we point out that
under such an infinitesimal rotation we have

δ~r = ε~n× ~r,

and
δ~̇r = ε~n× ~̇r.

This is easily verified with a judicious choice of coordinates, which you should verify as an
exercise. (Choose your z-axis along ~n, compute the effect of a rotation around by ε on ~r or
~̇r and expand everything to first order in ε. You can also convince yourself of the validity
of the above formulas by drawing some pictures.) Anyway, under a rotation about ~n by
ε << 1 we have the change in the Lagrangian to first order in ε given by (exercise)

δL =
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi

=
∂L

∂xi
ε(~n× ~r)i +

∂L

∂ẋi
ε(~n× ~̇r)i.

Here we have set xi = (x, y, z).

Suppose the Lagrangian is rotationally invariant (e.g., the particle moves in a central
force field) about ~n. Then we know a priori the following identity holds

∂L

∂xi
(~n× ~r)i +

∂L

∂ẋi
(~n× ~̇r)i = 0.

In terms of the canonical momentum ~p conjugate to ~r, the EL equations are

Ei ≡
∂L

∂xi
− ṗi = 0.

The rotational symmetry identity, written above, can be expressed in terms of the EL
equations as (

~̇p+ ~E
)
· (~n× ~r) + ~p · (~n× ~̇r) = 0.

This identity can be rewritten as (exercise)

d

dt
[~n · (~r × ~p)] = −(~n× ~r) · ~E .

This is the statement that the component along ~n of the angular momentum,

~M = ~r × ~p,

is conserved when evaluated on solutions to the EL equations. If the rotational invariance
is valid for any choice of ~n then all components of ~M will be conserved. Note however that
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it is the canonical momentum that features in this conservation law, not the mechanical
momentum. We thus call ~M the canonical angular momentum and we call ~r × m~v the
mechanical angular momentum.

Here are some elementary examples of rotational symmetry and conservation of angular
momentum. A particle moving in a central force field has a Lagrangian:

L =
1
2
m~̇r

2 − U(|~r|).

This Lagrangian is clearly invariant under rotations. As a really good exercise you should
verify the infinitesimal rotational invariance identity:

∂L

∂xi
(~n× ~r)i +

∂L

∂ẋi
(~n× ~̇r)i = 0.

Thus all components of angular momentum are conserved. This can, of course, be checked
directly by using the equations of motion. Using the fact that the particle obeys Newton’s
second law with a force directed along the position vector ~r, you can easily prove that ~r×~p
is conserved (exercise).

As another example, consider a particle moving in a uniform force field ~F . This
means that the Cartesian components of ~F are constants. A Lagrangian for this system is
(exercise)

L =
1
2
m~̇r

2
+ ~F · ~r.

This Lagrangian would, e.g., describe the motion of a particle near the earth’s surface.
While the kinetic energy is rotationally invariant about any axis, the potential energy in
this example is not invariant under all rotations. This is because the vector ~F is fixed
once and for all; ~F is not allowed to rotate along with ~r and ~̇r. Another way to see this
is to suppose that we choose our z-axis along ~F . Then the potential energy is of the form
U = −F z. Under a rotation about anything but the z-axis this function will change!
The potential energy is invariant under rotations about an axis parallel to ~F (exercise).
Another good exercise: verify

∂L

∂xi
(~F × ~r)i +

∂L

∂ẋi
(~F × ~̇r)i = 0.

for this Lagrangian. Consequently the component of angular momentum along ~F will be
conserved. Again, using the equations of motion (EL equations),

m~̈r = ~F ,

you can verify the conservation law explicitly (exercise).
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Spacetime symmetry and Closed Systems and the Galileo Group

The usual model of space and time, which is tacitly part of Newtonian mechanics,
assumes that space and time are homogeneous and that space is isotropic. Thus a closed
system (isolated from the external world) should “behave” the same – obey the same
dynamical laws – no matter where in the universe it is located, when the system is studied,
and no matter how the system is oriented in space. This suggests that the Lagrangian for
such a system should be unchanged under space and time translations of the whole system
as well as rotations of the whole system. Given the connection between symmetries and
conservation laws we then expect corresponding conservation laws. We explore this briefly
here.

Let us consider a closed — isolated — system of interacting particles labeled by posi-
tions, ~r(1), ~r(2), etc. Think of the particles as living inside a “black box” which does not
interact with the outside world. The assumption of homogeneity of time implies that the
Lagrangian for the system does not have any explicit time dependence and the total canon-
ical energy is conserved, as discussed previously. By the assumption of the homogeneity of
space the physical system behaves the same no matter where it is located in the universe.
The Lagrangian will be unchanged under a spatial translation of the entire system. This
means that the Lagrangian is invariant under the transformation

~r(a) −→ ~r(a) +~b, ∀i

where ~b is any constant vector. Labeling the Cartesian coordinates as xi(a), a = 1, 2, . . .,

i.e., xi(1) = (x1, y1, z1), etc. this implies (exercise)

∑
a,i

bi
∂L

∂xi(a)
= 0.

The EL equations for the motion of the particles imply (exercise)

d

dt

∑
a,i

bipi(a) ≡
d

dt

∑
a

~b · ~p(a) = 0,

where
pi(a) =

∂L

∂ẋi(a)
,

and we have denoted the vector canonical momentum for each particle by ~p(a). The
quantity

~P =
∑
a

~p(a)

represents the total linear momentum for the system. We see that the invariance of physical
laws under a space translation by ~b implies that the component of the total momentum
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along ~b is conserved. Of course, since ~b is arbitrary, all 3 components of ~P are conserved
for a closed system because of the homogeneity of space.

For a Newtonian system, the Lagrangian is thus of the form

L =
∑
a

1
2
m(a)~̇r(a) − V (~r(1), ~r(2), . . .).

The conserved total energy is of the form

E =
∑
a,i

∂L

∂ẋi(a)
ẋi(a) − L =

∑
a

1
2
m(a)~̇r(a) + V (~r(1), ~r(2), . . .).

The conserved total momentum is

~P =
∂L

∂~̇r(a)
=
∑
a

m(a)~̇r(a).

Although I won’t prove it here, it is worth noting that the requirement of symmetry of the
Lagrangian under spatial translations of the system implies that the potential energy func-
tion can only depend upon the position vectors through their pairwise vector differences,
i.e.,

V = V (~r(1) − ~r(2), ~r(1) − ~r(3), . . .).

As an example, let us consider the Earth-Sun system ignoring all other external inter-
actions. The Lagrangian is of the form

L =
1
2
mE~̇r

2
E +

1
2
mS~̇r

2
S − V (|~rE − ~rS |).

Here we usually take the potential energy to be of the form

V =
GmEmS

|~rE − ~rS |
.

But more sophisticated choices for V are possible. In any case, the homogeneity of space
demands that V = V (|~rE − ~rS |), so the Lagrangian is invariant under any translation of
the form

~rE → ~rE +~b, ~rS → ~rS +~b.

Neither the momentum of the Earth nor that of the Sun is conserved. But, because the
Lagrangian is translationally invariant, the total momentum:

~P = mE~̇rE +mS~̇rS

is conserved.
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Let us now consider the implications of spatial isotropy. The isotropy of space implies
that a closed system will have a Lagrangian which is invariant under rigid rotations of all
the particles in the system. We have particles labeled by positions ~r(a) and velocities ~̇r(a).
Suppose the system admits a rotationally invariant Lagrangian. More precisely, suppose
the Lagrangian is assumed invariant under a simultaneous rotation of all the positions
and velocities about an axis ~n (through the origin). The infinitesimal invariance condition
generalizes in a straightforward manner (exercise):

∑
a

(
∂L

∂~r(a)
· (~n× ~r(a)) + ~p(a) · (~n× ~̇r(a))

)
= 0.

As before, we can restrict this to a curve satisfying the EL equations to find (exercise)∑
a

(
~̇p(a) · (~n× ~r(a)) + ~p(a) · (~n× ~̇r(a))

)
= 0.

As before we can rearrange this as (exercise)

d

dt

∑
a

[~n · (~r(a) × ~p(a))] =
d

dt

(
~n ·
∑
a

~Ma

)
= 0.

Thus invariance of the Lagrangian under a simultaneous rotation about the axis ~n of all
degrees of freedom leads to conservation of the component along ~n of the total angular
momentum,

~Mtotal =
∑
a

~Ma.

As an example, let us return yet again to the Earth-Sun system (2-body central force
problem). The Lagrangian is of the form

L =
1
2
mE~̇r

2
E +

1
2
mS~̇r

2
S − V (|~rE − ~rS |).

Because the scalars vE , vS , and |~rE − ~rS | are invariant under rotations, the Lagrangian is
invariant under any simultaneous rotation of the Earth and Sun variables (exercise). The
conserved angular momentum is (exercise)

~P = mE~rE × ~̇rE +mS~rS × ~̇rS .

To summarize, closed systems can always be expected to have conservation laws for the
total energy, total momentum, and total angular momentum by virtue of the homogeneity
and isotropy of space and time.

I should emphasize that it is possible to have conservation laws for open systems as
well. We have already seen examples, but let me revisit this idea. For example, the Earth-
Sun system we have discussed is a closed system admitting the usual conservation laws.
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But we often approximate the motion of the system by assuming the sun is fixed in space,
letting the dynamical system consist of the motion of the Earth in the fixed potential of
Sun. So, if we simplify our model by assuming we can choose a reference frame in which
the Sun is fixed, e.g., ~rSun = 0, then the resulting system (Earth in a central force field
due to the “environment” – the Sun) is not a closed system and need not have all the space
and time symmetries. In this case the system lacks space translation invariance since it
does matter to the earth where it is in space (relative to the fixed sun). Consequently, the
Earth’s linear momentum is not conserved. But the Lagrangian still has no explicit time
dependence and is still rotationally invariant (about axes going through the sun) and so
the canonical energy,

E =
1
2
mE~̇r

2
E −

GmEmS

|~rE |
,

is conserved, as is the angular momentum,

~M = mE ṙE .

Of course, both of these conservation laws are used to great effect in studying the motion
of the Earth.
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