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Introductory Remarks

This is probably your first real course in quantum mechanics. To be sure, it is un-

derstood that you have encountered an introduction to some of the basic concepts, phe-

nomenology, history, and so forth, of quantum mechanics in a course on “modern physics”.

But this is presumably your first chance to get your hands dirty and see to some extent

how the theory really works. Although you should have encountered already a survey of

the key experimental underpinnings of quantum mechanics, it is worth setting the stage

by giving some introductory remarks on what quantum mechanics is and why we use it.

Of course, these remarks, at best, can serve only to whet your appetite.

Quantum mechanics – and, in particular, its extension to quantum field theory – is

used to give a microscopic description of matter and its interactions at or below atomic

length scales. It is the currently accepted description based upon extensive experimental

investigation. Nevertheless, the way in which quantum mechanics describes nature is

sufficiently different from successful descriptions of macroscopic phenomena (e.g., from

classical mechanics), that I feel obliged to justify the existence of the subject to you. The

word “macroscopic” is an important clue to the need for quantum mechanics.

Consider a classical description of the structure and interactions of matter. Normally,

one assumes that matter can be broken into “small” constituents, which we mathemati-

cally model as “particles”, and which obey some set of physical laws, say, Newton’s laws,

and from which the behavior of matter can be explained and predicted. Of course, one

can always imagine subdividing the previous constituents into a new set of “smaller” par-

ticles, etc. One logical possibility is that Newton’s laws continue to hold at smaller and

smaller length scales. If this is the case, then there is apparently no end to the classi-

cal reductionist approach to describing matter. In classical mechanics the explanation of

phenomena involving “large” objects by simple laws describing the “small” objects is an

infinite regression. Still, as I said, it is possible the universe could have been set up along

these lines. (“Turtles all the way down!”) But according to experiment it isn’t.

The laws of nature do not seem amenable to an analysis along the lines just presented.

There is a real distinction between macroscopic and microscopic phenomena. Macroscopic

phenomena seem well-described by the laws of classical mechanics, while microscopic phe-

nomena require a different set of laws, the laws of quantum mechanics being the current

best set. In particular, at sufficiently small length scales it becomes clear that there are

fundamental limits to our ability to make certain kinds of basic measurements – an ability

that is taken for granted in classical mechanics. For example, the position and momentum

of a particle are the basic observables of classical mechanics; the laws of classical mechanics
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naturally deal with the time evolution of these observables. In particular, by knowing the

position and momentum at one time one can, using for example Newton’s laws, deduce

the trajectory of the particle in space for all time, hence the position and momentum (and

any other observables) are known for all time. All this is quite familiar to you. It is tacitly

assumed in classical mechanics that it is possible to determine with arbitrary accuracy

the position and momentum of a “particle” at any given time. However, when describing

microscopic systems, e.g., atoms, it turns out that it simply is not true that, say, the elec-

tron has a sharply defined position and momentum at any given time. Consequently, the

organization of the theory describing the atom in terms of position and momentum of its

constituent particles is simply not appropriate. As you probably have heard, if the position

of a particle is determined with great accuracy, the momentum has a wide variety of pos-

sible values, and vice versa. This is the celebrated “uncertainty principle”, which we shall

make more precise later. The uncertainty principle applies to a variety of observables—

not just position and momentum; many of the “classical” attributes of particles cannot

be determined with complete accuracy in the usual classical sense–even in principle. For

this reason there is no compelling reason to expect that these attributes (such as position

and momentum) are intrinsically part of a “particle”; something else may serve better to

describe matter.

Evidently, there is a real distinction between large and small in the universe. One

might say that “large” objects can have their classical observables (e.g., position and

momentum) determined at a given time with very, very good accuracy. “Small” objects

are such that it is impossible to measure the position without disturbing the momentum

and vice versa. In a real, operational sense, one must give up our classical notions of

particles as “objects” that have a definite position, momentum, and so forth, at least in

the classical sense. If position and momentum are denied their classical existence, then it

follows that particle trajectories (defined by Newton’s second law) are denied a microscopic

existence. The usual modus operandi of classical mechanics is simply not available and a

new mode of description of nature will be needed. Such a mode is provided by the (at first

sight, slightly bizarre) laws of quantum mechanics.

An illustrative thought experiment

To illustrate the above remarks, I would like to briefly discuss some thought experi-

ments (blatantly stolen from the Feynman Lectures), that will perhaps make the point bet-

ter than my clumsy pseudo-philosophical arguments. These are variations on the famous

“double slit experiments”, which you may have encountered in a previous introduction

to quantum mechanics. The “experiments” I will describe are over-simplifications of real

experiments.

We shall consider a thought experiment in which we send a beam of particles through
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a barrier with two openings, the “slits”. We shall first indicate what would be seen in a

macroscopic context, which will be pretty believable given our experience with everyday

mechanical phenomena. We then discuss what would be seen in a microscopic context; the

result is very surprising from the point of view of classical mechanics.

Macroscopic version

Let us fire a steady stream of bullets at an indestructible partition with two holes just

big enough to let the bullets go through. We assume that the gun firing the bullets sprays

them with some angular spread so that it is possible that a given bullet could go through

either hole. On the other side of the barrier there is a backstop that stops the bullets so

that at any time we can have a look and see how many bullets went where. You can easily

guess what will happen. Bullets will either pass through the holes, be “reflected” by the

partition, or perhaps scatter from the edge of a hole either backward or forward. What

is seen at the backstop? First of all, for sufficiently short time intervals, only one bullet

impact is detected during the time interval. Thus the impacts come in discrete lumps,

which confirms our understanding that bullets are localized in space at any given time.

To further quantify the results of this experiment we introduce (somewhat informally

for now) the notion of probability. If we pick a spot on the backstop, after a fixed amount of

time we can count how many bullets hit that spot. If we take the ratio of this number to the

total number of bullets that hit the backstop in that time interval we can interpret the ratio

(for a large enough total number of bullets) as the chance that the bullet was scattered

to our chosen spot. This ratio is a real number between 0 and 1 and is the probability

for scattering the bullet to the given location. If we graph the probability as a function

of position we find a curve with a maximum centered between the slits and decreasing

monotonically as we move away from the center. This is the probability distribution for

finding a bullet in the backstop.

Finally, it is useful for later comparison to repeat the experiment with one of the slits

closed. Then, of course, the bullets can only pass through the open slit and we obtain

a probability distribution that is qualitatively similar to the one we just found, but now

centered directly behind the open slit.

Let us call the probability distribution for each slit P1(x) and P2(x), where x locates

positions from the center point between the slits. The distribution P1 is measured with

slit number 2 closed, etc. Let us denote the probability distribution obtained with both

slits open by P (x). Given your everyday experience with macroscopic objects, it will not

surprise you that P (x) is the sum of P1(x) and P2(x).

To summarize: the results of the experiment are that bullets arrive at the backstop in

discrete “lumps”, and the probability P (x) for finding a bullet at the location x is given
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by

P (x) = P1(x) + P2(x).

Of course, we interpret this result by noting that a bullet must have traveled through

either slit 1 or slit 2, and the total probability is just the sum of the probability for these

mutually exclusive processes.

Microscopic version

Let us now repeat this experiment using electrons and very small slits. Now we must

use a more sophisticated means of detecting the electrons (e.g., a Geiger counter), but let

us not worry about the technicalities. To begin with, we note that the detector “clicks” in

a discrete fashion, which is consistent with our view of the electron as a discrete, lump of

matter. Next, let us try the experiment with only one slit open. As before, we find that

the probability distributions P1 or P2 to be peaked at the x location of slit 1 and slit 2,

respectively, with a monotonic decrease away from the peak. Now we try the experiment

with both slits open. Here is where nature is surprising. Instead of a peaked distribution

corresponding to the sum of P1 and P2 we find instead an oscillatory pattern within an

envelope that is peaked about x = 0. This oscillatory pattern is exactly like that which

occurs in the amplitudes of waves (e.g., water or light) that are passed through a barrier

with two slits. In the wave case we interpret the oscillating pattern in terms of interference

of the waves scattered from the two slits.

It is possible to cook up a mathematical description of the electron experiment to

match the interference pattern of waves if we assign a complex “amplitude” ψ1 to the

waves passing through the first slit and ψ2 to those passing through the second slit. The

total amplitude is then the sum:

ψ(x) = ψ1(x) + ψ2(x).

The probability P (x) for finding an electron at detector location x will take the desired

oscillatory pattern if we define

P (x) = |ψ1(x) + ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 + 2<[ψ∗1(x)ψ2(x)].

We can view the first two terms as representing the probability distributions coming from

electrons that pass through slit 1 and slit 2 respectively. Indeed, if we cover up one of the

slits, say slit 2, then we get P (x) = |ψ1(x)|2. However, because of the last “interference”

term, we cannot ascribe the total probability distribution when both slits are open to the

effects of each slit separately. In effect, this experiment prevents us from saying that the

electrons always travel through slit 1 or slit 2. Our classical picture of electrons as just

small “bullets” has not been supported by experiment.
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It is worth trying to see what happens if we attempt to track the electrons to see

through which slit they pass. We can imagine shining a light over each slit and, for a

sufficiently small intensity of incident electrons, “see” the electron pass through a slit and

then record its location with our detector. The result is that the interference pattern

disappears and we get

P (x) = |ψ1(x)|2 + |ψ2(x)|2.

This result might be explained by supposing that by shining the lights we have affected

in some noticeable way the movement of the electrons. If the electrons were “classical”

particles, like bullets, we could simply make our light weak enough so that we disturb

the particles by an arbitrarily small amount in the process of seeing which slit they went

through. For classical particles this is ok and is compatible with the observed probability

distribution. With electrons, however, no matter how weak we make the measuring dis-

turbance we get the classical distribution; but if we do not measure which slit the particles

went through we get the new, oscillatory distribution. Thus it is problematic to suppose

that the electron actually passes through just one of the slits in the original experiment. It

is simply not a good description of microscopic particles, such as electrons, to have them

behave as just some small classical bullets. A new, profoundly different way of describ-

ing (indeed, defining) microscopic particles is needed. Such a description is provided by

quantum mechanics.

Observables and States

Typically, a theoretical description of a physical system involves a mathematical repre-

sentation of (at least) two basic notions: observables and states. An observable is something

you can measure about a system. For example, a particle’s observables include position,

momentum, energy, angular momentum, etc. The state tells you what you will find when

you make a measurement of an observable. Usually the value of a suitable number of ob-

servables will uniquely determine the outcome of all other observables. So a measurement

of these observables will suffice to determine the state. For example, if we know that a

harmonic oscillator has zero energy, we know that its position will be at an equilibrium

point, its momentum will vanish, etc. More generally, once the values of position and mo-

mentum of a particle are known all other observables are determined.* We know that the

state of a system has changed when at least one observable has changed its value. We shall

spend the bulk of this class seeing precisely how quantum mechanics represents states and

observables.

In quantum mechanics, knowing the state of a system is equivalent to knowing the

probability distribution for measurements of all observables. Sometimes this notion of

* This is the meaning of the term “particle”.
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state yields relatively simple information: “the energy of a hydrogen atom in its ground

state is -13.6 eV”. Here it is tacit that the probability for finding this result is one and

that all other energies have probability zero. Not all states have such straightforward

interpretations. For example, one can have a state in which “the probability of finding the

particle on each side of the barrier is 1/2”. And it turns out that “if a particle is in a state

of statistically certain momentum it has equal probability to be almost anywhere”.

The introduction of probability distributions as the essence of a state is unsettling to a

classical mechanic who is used to asking: “If the initial position and momentum are given,

where will the particle be in 10 seconds?” To be sure, all such classical mechanics questions

can be rephrased in terms of probability distributions. For example, the previous question

could be rephrased as: “If the system has the given coordinates and momentum with

probability one at the initial time, what is the probability distribution for position after 10

seconds have passed?” In classical mechanics the probability distributions are quite simple,

e.g., the probability for the particle to be at its classical location at any given time (as

specified by Newton’s second law) is one, and zero otherwise. This is why it is cumbersome

to use probabilities to do classical mechanics, and we usually don’t do that.* In quantum

mechanics it is impossible to have a state in which position and momentum of a particle

are known with probability unity. Moreover, quantum mechanics will not, in general, lead

to simple probability distributions (1 or 0) for observables upon time evolution even if

the observables had statistically certain values at some initial time. For such reasons the

probability description of states and observables is mandatory.

If you are experienced with statistical mechanics, then viewing the state of a system

using probability distributions is probably familiar and reasonable. It is natural to ask: Is

quantum mechanics just some kind of statistical mechanics? It seems the answer is “no”

for a couple of reasons. Firstly, as briefly touched on earlier, probabilities in quantum

mechanics are combined by adding probability “amplitudes” (wave functions) then taking

the modulus-squared; this intermediate step allows for interference phenomena that cannot

be obtained using probabilities as one does in statistical mechanics. Secondly, in statistical

mechanics we are accustomed to thinking that the value of an observable for a system in

a given state is part of the “reality” of that system even if we choose to settle for a

statistical description for an ensemble of many such systems. So far as anyone knows,

nature is described by quantum mechanics, and quantum mechanics uses a probabilistic

notion of “state” as the complete description of any single system so that the “reality” of

observable features of a system is now a much more subtle thing. Hopefully we will have

time to discuss some of this in detail after we have acquired the necessary tools.

Has all of this introductory discussion left you feeling a little lost? That’s OK; if it all

* Or course, when the system is at a non-zero temperature it is very useful to work with
probabilities, as in statistical mechanics.
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were clear to you then you wouldn’t need this course!

We shall now turn to a more formal development of quantum mechanics, in which

we will terminate the vague, qualitative discussions of the theory and try to figure out

how to “do” it, quantitatively speaking. For quite a while we will for simplicity just

consider a single particle in a universe which is one-dimensional. Later we will amend this

oversimplification.
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