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Now for some formalism. . .

We have now acquired a little familiarity with how quantum mechanics works via

some simple examples. The approach has been rather informal; I have not systematicallty

stated the rules of the game. The situation is analogous to one way of studying Newtonian

mechanics. In your first exposure to Newtonian mechanics you may have had the following

experience. First, you learn some basic concepts, such as vectors, force, acceleration,

energy, etc. You learn, to some extent, how to use these concepts by studying some simple

examples. Along the way, you identify (perhaps without full generality) some of the key

laws that are being used. Finally, the whole framework is presented more systematically,

e.g., by carefully stating Newton’s laws. More or less, we have completed the first of the

steps. Now we must complete the second step.

To formulate the laws (or postulates) of quantum mechanics, we need to spend a little

time giving some mathematical method to the madness we have been indulging in so far.

In particular, we need to give a linear algebraic type of interpretation to the apparatus of

wave functions, operators, expectation values, and so forth. We begin by developing a point

of view in which states of the system are elements of a (very large) vector space. I assume

that you are already familiar with the fundamentals of linear algebra (vector spaces, bases,

linear transformations, eigenvalue problems, etc. ). If you need some remedial work, have

a look at the first section of chapter 3 in the text. I will only introduce the concepts that

we will actually need to explain the rules of quantum mechanics.

Function spaces as infinite dimensional vector spaces

I want to view states of a quantum system as elements of a vector space. Recall that

a vector space V is a set of vectors*

V = {|α〉, |β〉, . . .},

along with a set of scalars, (a, b, c, . . .). There is a rule for addition of any two vectors:

|α〉+ |β〉 = |γ〉,

* We are using Dirac’s “ket” notation for identifying vectors. We could just as well use the
usual vector arrow, or bold-face, or something like that. But the ket notation has distinct
advantages, as we shall see.
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such that the “sum” of any two vectors is another vector. There is a rule for multiplication

of vectors by scalars:

a|α〉 = |β〉,

such that the “product” of a scalar and a vector is another vector. The addition rule

is assumed commutative, associative, and the scalar multiplication is distributive over

addition. Scalar multiplication is also associative. Finally, there is a zero vector, which is

an additive identity.

Simple examples of vector spaces are (1) space of position vectors with addition defined

by the parallelogram rule, (2) space of n-tuples of numbers (or column vectors with n

entries), with addition defined component by component. As a great exercise, verify all

the above properties of a vector space in the context of these examples.

The claim is now that the space of wave functions can be viewed as forming a vector

space – the vector space of states. The set is the collection of all square integrable, complex

valued functions ψ of x. Here “square integrable” just means∫ ∞
−∞
|ψ(x)|2 dx <∞.

Certainly every normalized wave function is square integrable, and every square integrable

function (except ψ = 0 – see below) can be normalized, so we are including all wave

functions in our space. Since the vectors in our space are the wave functions we are

making the notational identification:

|ψ〉 ←→ ψ(x).

Next, define the sum of two vectors (functions) to be the ordinary (pointwise) sum of

the functions. For this to make sense we have to check that the sum of two normalizable

functions is normalizable. This is not obvious, but is nevertheless true. The proof can be

found in analysis and/or advanced calculus texts.

The scalars will be the complex numbers. Define scalar multiplication to be the usual

multiplication of a complex function by a complex number to get another complex function.

It is clear that scalar multiplication takes a square-integrable function to another square-

integrable function, so this definition makes sense. You can check the usual addition of

functions and multiplication of functions by scalars have all the required properties listed

above.

The zero vector is just the function that assigns the value zero to every x, i.e., the

function ψ(x) = 0. Since the zero vector is not normalizable, we cannot define the vector

space to be the vector space of normalized wave functions without giving up the very
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convenient function ψ(x) = 0. For this reason I enlarged the vector space description to

include all square-integrable functions.

Occasionally, additional requirements are imposed upon on our allowed wave functions.

For example, the particle in a box is modeled by a wave function that vanishes outside the

box. Such restrictions will not (or should not!) interfere with the vector space structure

just described. Consider the particle in a box wave functions that vanish outside the open

interval x ∈ (0, a). If you add two such wave functions with this property, the result also

has this property. If you multiply by a scalar, you preserve this property, the zero function

has this property, and so forth.

You know that every vector space admits a basis. A basis is a subset of vectors,

|ei〉, i = 1, 2, . . ., such that any vector |ψ〉 can be uniquely written as

|ψ〉 = c1|e1〉+ c2|e2〉+ . . . =
∑
i

ci|ei〉.

Here the coefficients ci are scalars. The number of basis elements is called the dimension

of the vector space. Every finite dimensional vector space admits infinitely many bases.

Our vector space of wave functions admits bases as well. For example, the stationary state

wave functions for the harmonic oscillator form a basis: every square-integrable function

of x can be expressed as a superposition of harmonic oscillatory stationary states:

ψ(x) =
∞∑
n=0

cnψn(x).

As another example, the vector space of energy eigenfunctions for a particle in a box

(those sine functions) form a basis. Quite generally, the stationary states (or energy

eigenfunctions) for a given physical system* will form a basis for the vector space of

wave functions of that system. Evidently, the vector space of wave functions is infinite

dimensional. This is a fact of life when you work with vector spaces that are spaces of

functions, i.e., function spaces.

Inner products

Measurements of observables generally result in real numbers. So, whenever we use

vector spaces to model the world around us, we must have a way of extracting numbers

from the vectors. Usually, a vector space comes equipped with an extra bit of structure

called an inner product (also called scalar product). In general, an inner product is a way of

assigning a scalar to any two vectors. The rule for building the scalar must be separately

linear in each variable.

* Recall that stationary states or energy eigenfunctions will require a time-independent po-
tential energy function.
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In our fancy vector space notation we represent the scalar associated to vectors |α〉
and |β〉 by 〈α|β〉, where the following properties are postulated

〈α|β〉 = 〈β|α〉∗,

〈α|(c|β〉+ d|γ〉) = c〈α|β〉+ d〈α|γ〉.

〈α|α〉 ≥ 0, 〈α|α〉 = 0⇔ |α〉 = 0.

For vector spaces defined using real scalars only the inner product does not depend

upon the position of the vectors, 〈α|β〉 = 〈β|α〉 (think about the dot product). In the

context where scalars can be complex, one uses a scalar product which does depend upon

the ordering of the vectors. The two different possible orderings differ by a complex

conjugation. The behavior of the inner product under complex conjugation, as postulated

above, is needed to guarantee that the inner product of a vector with itself is a real

number. Also notice that these properties imply that, in the complex case, the inner

product is conjugate linear in the left-most vector. What I mean is,

|α〉 = a|β〉 =⇒ 〈α|γ〉 = a∗〈β|γ〉.

Let me mention some examples. If the vector space is the space of position vectors,

then an example of an inner product is the standard dot product (exercise). If the vector

space is the space of column vectors v over the set of real scalars, then an inner product of

v and w is vtw, where the superscript “t” means transpose. If the scalars can be complex,

so that we can have complex entries in the column vector, and we denote

v ↔ |v〉, w ↔ |w〉,

then

〈v|w〉 = vt∗w ≡ v†w.

You should check that this definition of inner product does satisfy the properties listed

above. Note that I have used the notation †, which is called Hermitian conjugation. For

matrices, Hermitian conjugation means composition of the operations of complex conju-

gation and transposition of matrices.

In quantum mechanics, with the vector space being the space of square-integrable,

complex-valued functions, we can define an inner product by

〈ψ|φ〉 =

∫ ∞
−∞

ψ∗(x)φ(x) dx.

It is a nice exercise to check that this definition satisfies all the properties of an inner

product. The vector space of square-integrable functions equipped with the inner product

as above is called Hilbert space.
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Given an inner product, we can now define the length, or norm ||α|| of a vector |α〉 to

be

||α|| =
√
〈α|α〉.

We can also define two vectors |α〉 and |β〉 to be orthogonal if

〈α|β〉 = 0.

Given a basis |ei〉, i = 1, 2, . . . for a vector space, we say that the basis is an orthonormal

basis if

〈ei|ej〉 = δij .

The bound state wave functions (equivalently, energy eigenfunctions) for an infinite square

well and for the harmonic oscillator each form an orthonormal basis for the Hilbert space

of square integrable functions.

Linear Operators

An operator T̂ on a vector space is just a rule that assigns to any input vector an

output vector, denoted by T̂ |ψ〉. In certain situations (below) it will be instructive to use

a slightly different notation,

T̂ |ψ〉 ≡ |T̂ψ〉,

emphasizing the fact that the operation T results in a new vector.

We call T̂ a linear operator if the output vector is a linear function of the input vector.

This means for any two vectors α〉 and |β〉 and any two scalars a and b:

T̂ (a|α〉+ b|β〉) = aT̂ |α〉+ bT̂ |β〉.

The example of linear operators with which you are probably most familiar arises for

the n-dimensional vector space of column vectors with n rows. The linear operators are

represented by the set of n×n matrices acting on the column vectors via the usual matrix

multiplication.

If the vector space is the Hilbert space of square-integrable functions, such as we use in

quantum mechanics, then a linear operator T is a linear method of making a new square-

integrable function Tψ from any given function ψ. For example, for a given scalar a, the

operator defined by

T̂ψ(x) ≡ aψ(x),

is a very simple linear operator.* The operators defined by

T̂ψ(x) ≡ ψ(x) + 1, Ŵψ(x) ≡ ψ2(x)

* Do not confuse this with an eigenvalue equation. This equation just says that the operator
is defined as T̂ = a1̂.
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are not linear operators. More interesting examples are the position operator

x̂ψ(x) = xψ(x),

and the momentum operator

p̂ψ(x) =
h̄

i

d

dx
ψ(x).

These are easily checked to be linear. As another example, consider the linear operator

obtained by applying the momentum operator twice. We define

p2ψ(x) ≡ p(pψ(x)) = −h̄2 d
2

dx2
ψ(x).

You can check that this operator is indeed linear. More generally, you can easily prove

that the composition of two linear operators is again a linear operator.

Operator domain issues

Having defined the position and momentum operators, we must pause for a technical

subtlety peculiar to infinite dimensional vector spaces. It can happen that a linear oper-

ation does not take every element of the vector space and output another element of the

vector space. For example, the following function is square-integrable (exercise)

ψ(x) =
i√

1 + x2
.

However, if we act on it with the position operator we get the function

x̂ψ(x) =
ix√

1 + x2
,

which is not square-integrable (exercise). To confuse matters more, the momentum oper-

ator doesn’t cause this problem with this function, since

p̂ψ(x) = − h̄x

(1 + x2)3/2

is square-integrable. On the other hand, there are functions that are square-integrable

whose derivative is not. For example, the square pulse function

ψ =
{

1 a < x < b
0 otherwise

is square-integrable. But its derivative is a sum of two delta-functions, which is definitely

not square-integrable.
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The point here is that linear operators may have a restricted domain of definition. Not

all operators have this problem. For example, T , defined by

T̂ψ(x) = cψ(x),

where c is any constant, is defined on all square-integrable functions. This domain issue

can be a source of trouble, but we shall try to steer clear of it. For now, we simply point

out that we have to assume that the wave function being operated on is in the domain of

the operator.

Matrix elements, Hermitian operators

Given a vector space with an inner product, and given a linear operator T̂ along with a

couple of vectors, |α〉 and |β〉, we can define complex numbers by taking the inner product

of a vector |α〉 with the the vector T̂ |β〉:

(〈α|)(T̂ |β〉) ≡ 〈α|T̂ |β〉 ≡ 〈β|T̂α〉.

This is called the α-β matrix element of T̂ . This terminology will become clear to you if

you consider the case where the vector space is the space of column vectors, T is a matrix,

and α and β are a couple of basis vectors. Then you can easily see that by varying the

choice of the basis vectors, the indicated inner products yield all the matrix elements. You

really have to try this yourself to see what I mean.

Given a linear operator T̂ , suppose we define a new linear operator, denoted by T †, by

the requirement that

〈β|T̂α〉 = 〈T̂ †β|α〉.

Note that we can also write this relation as

〈α|T̂ †|β〉 = 〈β|T̂ |α〉∗.

This new operator, T †, is called the Hermitian adjoint or just adjoint of T̂ . In our matrix

example, the adjoint of a matrix is the matrix obtained by taking the complex conjugate

of each entry and then taking the matrix transpose (exercise). If the operators T and T †

have the same domain, and on that domain T = T †, we say the operator T is self-adjoint.

If we are a little more careless, and forget about domains and have the identity T = T † (on

some set of vectors), then we say the operator is Hermitian. In what follows we will follow

the usual physicist’s tradition and assume that Hermitian operators are also self-adjoint.

(But, be warned: mathematicians will be uncomfortable with this; in general one has to

verify whether a Hermitian operator is also self-adjoint.)
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A simple example of a all this is as follows. Consider a 2-d complex vector space of

column vectors,

|v〉 =

(
v1
v2

)
= ~v.

A linear operator is a matrix

T̂ =

(
a b
c d

)
, T̂ |v〉 =

(
a b
c d

)(
v1
v2

)
=

(
av1 + bv2
cv1 + dv2

)
The Hermitian adjoint of this matrix is the complex conjugate-transpose:

T † = T ∗t =

(
a∗ c∗
b∗ d∗

)
,

as you can see from

〈w|T̂ v〉 = ~w∗tT̂~v = (T̂ ∗t ~w)∗t~v = 〈T̂ ∗tw|v〉.

For the matrix to be Hermitian we must have (exercise)

a = a∗, b = c∗, d = d∗,

that is

T =

(
a b
b∗ d

)
,

where a and d are real numbers. (Domain issues do not arise for finite-dimensional vector

spaces, so Hermitian is really synonymous with self-adjoint here.) This says the matrix

elements of the complex-conjugate-transpose matrix equal the original matrix. This is

consistent with the matrix element relation shown earlier:

〈α|T̂ †|β〉 = 〈β|T̂ |α〉∗.

Hermitian operators are easy to find in the vector space of square-integrable functions.

The position operator is Hermitian:

〈φ|x̂ψ〉 =

∫ ∞
−∞

φ∗xψ dx

=

∫ ∞
−∞

(xφ)∗ψ dx

= 〈x̂φ|ψ〉.
Similarly, the momentum operator is Hermitian:

〈φ|p̂ψ〉 =

∫ ∞
−∞

φ∗
h̄

i

d

dx
ψ dx

= −
∫ ∞
−∞

(
h̄

i

d

dx
φ∗
)
ψ dx

=

∫ ∞
−∞

(
h̄

i

d

dx
φ

)∗
ψ dx

= 〈p̂φ|ψ〉.
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To get the second equality I integrated by parts and threw away the boundary term since

square-integrable functions vanish at infinity.

Hermitian operators are used for representing observables. There are a couple of rea-

sons for this. The first reason manifests itself in the fact that the expectation value of

a Hermitian operator is real. To see this, first note that the expectation value of an ob-

servable T in a state represented by the wave function |ψ〉 is the corresponding diagonal

matrix element of its operator representative T̂ :

〈T 〉 =

∫ ∞
−∞

ψ∗T̂ψ dx = 〈ψ|T̂ |ψ〉.

This matrix element will be real if T̂ is Hermitian:

〈T 〉 = 〈ψ|T̂ψ〉 = 〈T̂ψ|ψ〉 = 〈ψ|Tψ〉∗ = 〈T 〉∗.

To understand this better, and to see what is the second reason we use Hermitian operators

to represent observables, we need to review the notions of eigenvalues and eigenvectors.

Eigenvalues and eigenvectors

Generally, a linear operator transforms vectors into other vectors. It is possible that

a given operator will be such that some special vectors only get rescaled by the linear

transformation:*

T̂ |ψ〉 = λ|ψ〉.

When this happens we say that |ψ〉 is an eigenvector of T with eigenvalue λ. Usually these

special vectors get denoted by |λ〉, so we can more easily recall this property.

You have already seen several examples of this. In each of the particle in the box,

harmonic oscillator, and square well examples, we found solutions |ψ〉, E of the equation

Ĥ|ψ〉 = E|ψ〉.

Here the vectors |ψ〉, the energy eigenfunctions (also representing the stationary states),

are the eigenvectors of the linear operator Ĥ, where

Ĥψ = − h̄
2

2m
ψ′′ + V ψ,

and the corresponding energy E is the eigenvalue. Evidently, a better notation for these

vectors would be |E〉, and we shall use this notation for energy eigenvectors:

Ĥ|E〉 = E|E〉.

* Here we are not defining the operator as λ1̂, since that would have T̂ |ψ〉 = λ|ψ〉 for all
vectors |ψ〉. Here we are supposing that (at least) one vector and scalar satisfy this relation,
but not all vectors.

9



The formalism of quantum mechanics

The free particle example and the scattering states of the square well example led to

similar relations, but since the would-be eigenfunctions are not normalizable, they are not

in the vector space, strictly speaking. More on this later.

In each of our examples (particle in a box, harmonic oscillator, etc. ) the eigenvalues

E were real numbers. This is good since the eigenvalues were interpreted as the allowed

energies of the system. Now, it is not too hard to see (using a combination of our proofs

for position and momentum) that the Hamiltonian Ĥ is a Hermitian operator. Hermitian

operators are nice since they always have real eigenvalues. How to see this? Just deduce

it from the fact that the expectation value of the Hamiltonian in a eigenstate with energy

E – denoted now by |E〉 – is real:

〈H〉 = 〈E|Ĥ|E〉
= 〈E|E|E〉
= E〈E|E〉.

Now, since the expectation value is real, and the squared-norm of |E〉 is real, it follows

that E is real. Note we only used the fact that the operator was Hermitian to get the

proof. Thus eigenvalues of Hermitian operators are always real.

In general, the fact that the eigenvalues E are real is in agreement with the fact that

the expectation value is real (for any vector, not just eigenvectors) since the expectation

value is a weighted average over the allowed energy eigenvalues.

It is easy to show that the eigenvectors of a Hermitian operator are orthogonal if they

correspond to different eigenvalues. Let T̂ be a Hermitian operator, and let |λ1〉 and |λ2〉
be eigenvectors with eigenvalues λ1 and λ2, respectively. Consider the matrix element

〈λ2|T̂ λ1〉 = λ1〈λ2|λ1〉.

By definition of adjoint we have

〈λ2|T̂ λ1〉 = 〈T̂ †λ2|λ̂1〉.

Since T is Hermitian, we have T † = T so that

λ1〈λ2|λ1〉 = 〈λ2|T̂ λ1〉 = 〈T̂ †λ2|λ̂1〉 = λ2〈λ2|λ1〉.

We conclude that

(λ2 − λ1)〈λ2|λ1〉 = 0.

So, provided λ1 6= λ2, the eigenvectors are orthogonal.

Let us summarize the key features of Hermitian operators found thus far: (1) The

eigenvalues are real; (2) Eigenvectors with distinct eigenvalues are orthogonal.
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There is a third property of Hermitian (better: self-adjoint) operators that is extremely

important. For a special class of vector spaces, the so-called Hilbert spaces, it can be shown

that the eigenvectors of a Hermitian (really, self-adjoint) operator always form a basis for

the vector space. This basis can be chosen to be orthonormal.

What is a Hilbert space? Well, we won’t try to define it in detail (see the text for more

information) since we won’t need this much technology. Suffice it to say that a Hilbert

space is a vector space with an inner product and which possesses a property known as

completeness. This latter property is needed to get our result that the eigenvectors of

Hermitian operators form a basis.

The restriction to Hilbert spaces is only needed for infinite dimensional spaces. The

usual spaces found in matrix problems are finite dimensional and are always Hilbert spaces.

You have already seen that the stationary states, i.e., eigenvectors of the Hermitian

operator H, form a basis. This suggests that the space of square-integrable functions is a

Hilbert space, and it is. Why this mathematical result is so useful for setting up a physical

theory will be seen shortly, but note that we have already used it to our advantage in

writing the general solution of the Schrödinger equation.

The spectrum

Given a linear operator T , the set of all its eigenvalues is called the spectrum of T . For

example, the spectrum of the operator

H =
p2

2m
+

1

2
mω2x2

is the set
1

2
h̄ω,

3

2
h̄ω,

5

2
h̄ω, . . . ,

that is,

En = (n+
1

2
)h̄ω, n = 0, 1, 2, . . . .

Because the spectrum consists of a discrete set of numbers, we say that the Hamiltonian

for a harmonic oscillator has a discrete spectrum.

It is possible that some operators will have eigenvalues that form a continuum, i.e.,

form a continuous spectrum. The eigenvalue problem for such operators is a bit more

subtle. A simple example is the momentum operator. Let us solve for its eigenvalues:

pψ = λψ −→ dψ

dx
=
i

h̄
λψ.

This equation is easily solved, for any (even complex) choice of λ, and any scalar A, we

have (exercise)

ψ(x) = Ae
i
h̄λx.
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You might wonder how the eigenvalue can be complex since we showed that p is Hermitian,

and we showed that Hermitian operators always have real eigenvalues. The loophole is that

the functions Ae
i
h̄λx are not square-integrable, that is, are not elements of the vector space!

This is a general result: Hermitian operators with discrete spectrum will have eigen-

vectors lying in the vector space. Hermitian operators with continuous spectrum will have

“generalized eigenvectors”, that is, eigenvectors that live elsewhere. (“Elsewhere” can be

given a careful definition using the notion of a distribution. We shall avoid developing the

mathematics of distributions, but see below for another example of one.)

You can check the result just stated using the Hamiltonians that arise in our previous

examples. For the particle in the box, the energy spectrum is discrete, and the stationary

states are normalizable. For the harmonic oscillator, the energy spectrum is discrete,

and the stationary states are normalizable. For the free particle, the energy spectrum

is continuous and the (would be) stationary states are not normalizable. For the square

well the bound state energy spectrum (E < 0) is discrete and the stationary states are

normalizable; the scattering energy spectrum (E > 0) is continuous and the stationary

states are not normalizable. This last example shows that an operator can have a spectrum

that has a discrete part and a continuous part. This is typical when the potential energy

function admits both bound states and scattering states.

Another example of an operator with a continuous spectrum is the position operator.

The eigenvalue problem here is tricky. We want a function ψ(x) and a constant λ such

that

xψ(x) = λψ(x), ∀x.

A moment’s thought will convince you that no (non-vanishing) function could possibly sat-

isfy such an equation. Something more exotic must appear in the role of the eigenfunction.

The solution turns out to be, for any choice of λ and constant A,

ψ(x) = Aδ(x− λ).

Here we use the Dirac “delta function”, which can be viewed as the limit of a normalized

Gaussian, centered at λ in the limit as the width of the Gaussian goes to zero. Roughly

speaking, the delta function is a Gaussian of infinite height and zero width! Clearly, this

type of limit does not yield a function in the ordinary sense, but rather defines a generalized

kind of function called a distribution. Such quantities cannot be integrated in the usual

way, and are not square-integrable. Indeed, the eigenvalue equation above needs a special

definition to even make sense of it. Here is one way – using Fourier analysis – of building

a delta function satisfying the above eigenvalue equation:

δ(x− λ) =
1

2π

∫ ∞
−∞

dk eik(x−λ).
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We will not need to go into all this, but I point it out since it is a fact of life in quantum

mechanics.

We have seen that operators with continuous spectrum do not behave very much like

operators (matrices) on finite-dimensional spaces. In particular, Hermitian operators with

continuous spectrum do not, strictly speaking, have eigenvalues or eigenvectors. Even if we

allow the more general (distributional) type of eigenvectors, the eigenvalues need not be

real. A more detailed examination of the issue shows that, for Hilbert spaces, (1) Hermitian

operators with continuous spectrum can always have their generalized eigenvectors chosen

to yield real eigenvalues; (2) the generalized eigenvectors with real eigenvalues form a sort

of basis for the space in the sense that elements of the vector space can be represented as

a superposition of the generalized eigenvectors. . . even if these generalized eigenvectors do

not live in the vector space!

To prove this in general takes us too far afield, but an important and illustrative

example arises with the momentum operator. We can choose the eigenvalues to be real;

the (generalized) eigenfunction ψλ with eigenvalue λ can be written as

ψλ =
1√
2π
e

i
h̄λx.

We have mentioned before that, according to the theory of Fourier analysis, every square-

integrable function ψ(x) (i.e., element of the vector space) can be written as

ψ(x) =

∫ ∞
−∞

φ(λ)ψλ(x),

for some choice of φ(λ). You should think of this as a generalized, continuous version of the

result that eigenvectors of a Hermitian operator form a basis. Indeed, our last continuous

superposition formula holds for any Hermitian operator where ψλ(x) is the eigenfunction

with continuous eigenvalue λ. If the operator has both continuous and discrete parts to its

spectrum, we get a sum over the discrete eigenvalues and an integral over the continuous

ones.

Postulates of quantum mechanics

We have now acquired enough terminology to succinctly state the rules of quantum

mechanics. These rules provide a mathematical means of modeling the physical world in

a way which, so far, has agreed with experiment in all respects.

While all of our applications of the rules of quantum mechanics will be non-relativistic

(all velocities are small compared to that of light; all gravitational fields are weak) the

postulates themselves are not sensitive to whether one incorporates relativity or not. Of

course, relativistic effects in quantum mechanics are detectable, e.g., in the spectrum of
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the hydrogen atom, and so should be included in a more complete theory. Moreover, rela-

tivistic quantum theory sits on an uncomfortable fence between non-relativistic quantum

theory and quantum field theory. The problem is that relativistic quantum mechanics al-

lows for arbitrarily large energies, but high-energy processes lead to particle creation and

annihilation, which quantum mechanics cannot handle in its usual implementation. One

generalizes the application of the rules of quantum mechanics to fields instead of particles

– quantum field theory – to accommodate such situations. Again, the postulates we are

about to state still hold, and form the foundation of the quantum field theory, but the

details of the implementation of the rules is rather different in quantum field theory than

in quantum mechanics.

Finally, whether working in non-relativistic quantum mechanics, relativistic quantum

mechanics, or quantum field theory, there is an additional feature of the world to be taken

into account when considering systems with more than one particle. More precisely, one

must include a way of properly handling identical particles. In quantum mechanics, this

leads to another postulate (the symmetrization postulate), that we shall discuss a little

later.

Postulate: The state of a particle is represented by a normalized vector in a

Hilbert space

We have seen that the set of square-integrable functions forms a Hilbert space. Every

square-integrable function (except the 0 function) can, by multiplication by a constant,

be normalized (exercise). The normalization requirement is crucial for the probability

interpretation, which will be stated shortly. The Hilbert space requirement is needed so

that the eigenvectors of Hermitian operators form a basis, which will also be crucial for

one of the postulates that is coming up.

One often says that a state of a particle (or, more generally, any quantum system) is

represented by a ray in the vector space. In Euclidean space, a ray is a directed half-line.

It is easy to see that any two non-zero vectors in Euclidean space that are parallel lie on

the same ray (exercise). Moreover, a ray is the set of endpoints of vectors obtained by

taking a position vector and scaling it by all positive real numbers. We can generalize this

notion of ray to any vector space. A ray is the subset of vectors all of which differ by a

scalar multiple. Now you can see why a ray is a state: given a ray, we simply select the

element of the ray that has unit length to get the wave function. Conversely, given a wave

function the ray is determined.

Postulate: Observable quantities correspond to self-adjoint operators.

Here self-adjoint means “Hermitian” with appropriate care taken with domains of
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definition of operators. This postulate is needed so that (i) outcomes of measurements of

observables can be represented by real numbers, and (ii) eigenvectors form a basis. The

utility of (i) and (ii) is explained in the postulates that follow.

For a particle moving in one-dimension the simplest observables are (represented by)

the position and momentum operators x and p. Usually, one assumes that no other

observable features of the particle exist, that is, all other observables can be built from

these two operators.* Thus, for example, the potential energy observable is V = V (x).

What this means is that V is represented by the Hermitian linear operator

V ψ(x) = V (x)ψ(x).

Likewise, the kinetic energy observable is represented by K = p2/2m, that is,

Kψ(x) ≡ 1

2m
p2ψ(x) = − h̄

2

2m

d2ψ(x)

dx2
.

It can be difficult to directly measure the kinetic or potential energy functions. It is often

easier (using conservation of energy ideas) to measure the total energy, which is represented

by the operator

H = K + V.

Postulate: A measurement of an observable represented by an operator T will

return an element of the spectrum of T .

We see here a generalization to all observables of our previous rule that the allowed

energies of the particle are the separation constants E that appear in the TISE – the

spectrum of the Hamiltonian. For the particle in the box, the harmonic oscillator, and

the bound states of the square well, the Hamiltonian has a discrete spectrum of allowed

energies. One says that these observables have been “quantized” relative to their classical

counterparts. When we come to study three-dimensional systems we will find that angular

momentum is also quantized, that is, it is represented by (3) operators with discrete

spectrum. Other observables, like the position, momentum, kinetic energy, scattering

energies for a square well potential, etc. have continuous spectra and so the allowed values

of a measurement of such quantities form a continuum.

Postulate: Given an observable represented by T , the probability for finding

the eigenvalue λ coming from the discrete part of the spectrum of T upon

* This is certainly the case in classical mechanics. Nevertheless, it is an assumption made to
simplify the model and will have to be modified eventually to take account of things like
intrinsic spin.
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measurement in the state |ψ〉 is the absolute square of the component of |ψ〉
along the basis element/eigenvector |λ〉.

What this postulate means is this. Suppose first that the spectrum of T is discrete,

with eigenvalues λn, n = 1, 2, . . .. Since the corresponding eigenvectors |λn〉 of T form an

orthonormal basis, we can write any vector as

|ψ〉 =
∞∑
n=1

cn|λn〉.

The probability, P (λn), for getting the value λn in the state defined by the normalized

vector |ψ〉 is given by

P (λn) = |cn|2.

The normalization condition implies (exercise)

∞∑
n=1

|cn|2 = 1.

Here you begin to see why it was crucial that the eigenvectors formed a basis. You can

think of the complex numbers cn as akin to a wave function that has a discrete argument

(n).

As a nice exercise you can verify that this postulate implies that the expectation value

of T in the state |ψ〉 is given by

〈T 〉 = 〈ψ|T |ψ〉.

Another consequence of this postulate is that the probability for finding the eigenvalue

λn (for some fixed value of n) is one if and only if the state is an eigenstate of T associated

to the eigenvalue λn. What this means is that, if the state is represented by the vector |λn〉,
then it is clear that all the coefficients ci, i 6= n must vanish. In this case, by normalization,

|cn|2 = 1. Conversely, if the probability for finding λn is unity, it follows that |ci|2, i 6= n

must vanish, which means that |ψ〉 is an eigenvector of T with eigenvalue λn. We have

seen this situation when dealing with stationary states (exercise); the rules of quantum

mechanics assert that this situation applies to any observable – assuming the eigenvectors

are elements of the Hilbert space. This last comment will be explored below.

Summary of the postulates so far. . .

So far, we have spelled out four postulates of quantum mechanics. The first two

(states are normalized vectors in Hilbert space, observables are represented by Hermitian
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operators) basically tell us what are the mathematical tools we should use to model a

physical system. The latter two postulates (outcome of measurement is an eigenvalue,

probability distribution) spell out what the physical predictions of quantum mechanics

will be, given a representation of observables by operators on a Hilbert space of states.

Thus you can think of the first two postulates as controlling the input to the quantum

mechanical theory, and the last two as the output. Let me emphasize that this is the whole

output of quantum mechanics: (1) possible outcome of measurements, and (2) probabilities

for those outcomes.

The case of continuous spectra

When the spectrum of an operator representing an observable is continuous, or has

a continuous part, we have to generalize slightly our discussion of the physical output of

quantum mechanics. To begin, let us suppose that the spectrum has no discrete part - as

in the momentum operator. Let us denote the operator by T and the eigenvalues by λ. As

mentioned earlier, for Hermitian operators on Hilbert space one can restrict attention to the

real part {λ} of the continuous spectrum and the corresponding generalized eigenvectors

|λ〉′ are complete so that, for any vector |ψ〉

|ψ〉 =

∫
spectrum

φ(λ)|λ〉′ dλ.

Here I have used a prime to remind us that, strictly speaking, the generalized eigenvectors

are not elements of the Hilbert space. Usually, one doesn’t bother to include the prime

notation. I will temporarily include the prime for pedagogical reasons.

The probability P([a,b]) for finding the observable to have a value λ ∈ [a, b] is given by

P ([a, b]) =

∫ b

a
|φ(λ)|2 dλ.

Normalization means that ∫
spectrum

|φ(λ)|2 dλ = 1.

Letting the region [a, b] be infinitesimal, we can say that |φ(λ)|2 is the probability density

for measurement of T . This means that

〈T 〉 = 〈ψ|T |ψ〉 =

∫
spectrum

|φ(λ)|2λ dλ.

All of this shows that the functions φ(λ) are used to describe the observable T , just like

the position wave function is used to describe the observable x. Indeed, the position

observable, its wave function, etc., should be viewed as a special case of this more general

point of view.
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Let us see how the position probability fits into this picture. The position eigenfunction

with eigenvalue λ is given by a delta function:

|x = λ〉 ↔ δ(x− λ).

We can write the wave function as

ψ(x) =

∫ ∞
−∞

dλψ(λ)δ(x− λ).

Evidently, the probability density for position at x = λ is given by |ψ(λ)|2, in agreement

with all we’ve done in the past.

Another nice example of this is the momentum operator. We saw that, by representing

momentum with a derivative operator, the spectrum was the set of real numbers. The

generalized eigenvectors are the functions

ψλ(x) =
1√
2π
eikx.

The eigenvalue relation is then

pψ =
h̄

i

dψ

dx
= h̄kψ,

that is,

λ = h̄k.

The numerical factor in front of the momentum eigenfunction was chosen so that the expan-

sion of a wave function in the basis of (generalized) momentum eigenfunctions, according

to the formula above, is the standard Fourier expansion:

ψ(x) =

∫ ∞
−∞

1√
2π
eikxφ(k) dk.

The expansion coefficients φ(k) constitute the Fourier transform of ψ(x). These are often

called the momentum space wave functions since, according to our general scheme, |φ(k)|2

is the probability density for finding the momentum at the value h̄k (exercise). From

this it follows that the expectation value of momentum in in the state ψ(x) with Fourier

transform φ(k) is given by (exercise)

〈p〉 =

∫ ∞
−∞
|φ(k)|2h̄k dk

I now give our last postulate, for now. This one deals with the implementation of

dynamics.
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Postulate: Given a Hamiltonian, the time evolution of a given initial state is

determined by the Schrödinger equation. Immediately after a measurement of

an observable T with outcome given by the eigenvalue λ of T̂ , the state of the

system is the corresponding eigenvector |λ〉.

The first part of the postulate is, by now, pretty familiar to you. To describe dynamics,

one has to decide what operator represents the Hamiltonian of the system. Often times

the classical approximation is a guide, but there is no universal prescription for choosing

the Hamiltonian. Indeed, the art of quantum mechanics lies, at least in part, in deducing

the Hamiltonian that describes the physical system of interest.

The second part of the postulate gives help in understanding how to “prepare a state”.

For example, suppose we want to prepare some harmonic oscillators in their ground state

so as to, say, make some position measurements. We can take a box full of harmonic

oscillators and measure their energies. We keep the ones with energy 1
2 h̄ω, henceforth we

know these are in the desired stationary state. We do not have to prepare states only

according to their energy. We can measure whichever observables we want (subject to an

uncertainty relation obstruction to be discussed below) and select the systems with desired

eigenvalues for these observables. Such states will, in general, change in time but they have

the desired characteristics immediately after the measurement.

If the observable being measured has continuous spectrum, then the state of the system

cannot be its eigenfunction, strictly speaking since the (would-be) eigenfunction is not

normalizable. Instead, if our measurement localized the value of λ to be, say, in the

interval (a, b), then the state of the system is a normalized superposition over generalized

eigenvectors with that range of values:

|ψ〉 =
1√
b− a

∫ b

a
|λ〉 dλ.

For example, if we make a position measurement and find x ∈ (x1, x2) then the resulting

state is

ψ(x) =

{ 1√
x2−x1

x1 < x < x2

0 x < x1, x > x2.

As another example, suppose we measure the momentum to be in the region (p1 =

h̄k1, p2 = h̄k2). Then the wave function just after the measurement is

ψ(x) =
1√

2πh̄(p2 − p1)

∫ p2

p1

eipx/h̄dp =

√
h̄

2π(p2 − p1)

∫ k2

k1

eikx dk =

√
h̄

2π(k2 − k1)

eik1x − eik2x

ix
.

If you like taking Fourier transforms, you can check that the momentum space wave func-

tion corresponding to ψ(x) (i.e., the Fourier transform of ψ(x)) is a constant in the region
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k = (a, b) and zero elsewhere in “k-space”. The probability density in position space is

easily computed:

|ψ(x)|2 =
h̄

π(k2 − k1)

1− cos[(k2 − k1)x]

x2
.

This density is peaked about x = 0 and oscillates as its amplitude decreases away from

x = 0 .

This last part of the postulate is actually pretty weird. To see what I mean, suppose

that a particle in a box of size 1 meter is in a superposition of the ground and first excited

states at some time, say t = 0:

Ψ(x, 0) =
1√
2

(ψ1(x) + ψ2(x)).

If you make an energy measurement at that time you have a 50-50 chance of getting the

ground state energy versus the first excited state energy. Suppose you get the ground

state energy. If you immediately repeat the measurement you will get the ground state

energy with probability one, since the state is now the ground state. Somehow, it is as

if – at least mathematically – the measurement “collapsed” the wave function from the

superposition of two eigenstates to the single eigenstate. This can lead to some pretty

weird experimental predictions – predictions which have been verified experimentally! For

example, the probability for getting the ground state energy at some time later, will depend

upon whether or not you chose to measure the energy at t = 0. That is, if you do not

measure the energy at t = 0, then you still get a 50-50 possibility of finding ground or first

excited state energies when you finally do measure the energy. If someone sneaks up and

secretly takes a measurement at t = 0, when you get around to making your measurement

of energy, you will find with probability one the energy your mischievous colleague found

at t = 0.

Another very simple example: after finding the ground state energy at t = 0, we then

measure the position and find the particle to be, say, in the region x = 0.24± .1m. Then

the position wave function is, immediately after the measurement, constant in the region

x = .24 ± .1m and zero elsewhere (as we worked out earlier). This is certainly not a

stationary state, let alone the ground state. An immediately subsequent measurement of

the energy can yield a variety of possible outcomes with varying probabilities (exercise). If

we did not make the position measurement, the result of the second energy measurement

would, again, be the ground state with probability one. Thus the act of measurement can

affect the subsequent behavior of the system!

This last example shows that the position and energy observables are in a certain sense

“incompatible”, in that the measurement of one disturbs the value of the other. This is

an instance of the uncertainty relation, which we shall now discuss in some detail.
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The general form of the uncertainty relation for observables

I would now like to state the general form of the celebrated uncertainty relation for

observables in quantum mechanics. We shall see that the uncertainty principle we have

seen from time to time (e.g., dealing with position and momentum observables) is a special

case of this general result. I will not prove this general result! You could easily understand

the proof, but I cannot improve on the text’s presentation, which you can read as easily as

I can. Moreover, the proof does not really help us to learn anything physically (although

it nicely illustrates mathematical aspects of operators and vector spaces). I would rather

spend time explaining the relation than deriving it.

To begin, it is important to emphasize that the uncertainty relation is a statement

about a pair of observables. Moreover, the relation may depend upon the particular state

of the system. To describe the uncertainty relation, we first need a definition.

Let A and B be a pair of observables, with corresponding Hermitian operators Â and

B̂. Define the commutator [Â, B̂] of two operators to be the operator obtained by

[Â, B̂]|ψ〉 = (ÂB̂ − B̂Â)|ψ〉.

The commutator is a linear operator that measures whether or not the order of the two

operations matters. If the operator you get is the zero operator (maps every state to the

zero vector), then the order of operation does not matter, and we say Â and B̂ commute.

Some good exercises are to prove that:

[x̂, x̂] = 0, [x̂, p̂] = ih̄1̂, [x̂2, p̂] = 2ih̄x̂, [x̂, p̂2] = 2ih̄p̂.

Here 0 is the “zero operator”, which maps every vector to the zero vector; 1̂ is the identity

operator, 1̂|ψ〉 = |ψ〉. The square of an operator means to apply the operation twice.

Let |ψ〉 define a state, that is, |ψ〉 is a normalized element of a Hilbert space. For

the observables A and B we can compute the standard deviations for the probability

distributions:

σA =
[
〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2

]1/2
σB =

[
〈ψ|B̂2|ψ〉 − 〈ψ|B̂|ψ〉2

]1/2
The uncertainty relation, in its most general form, says that

σAσB ≥
1

2

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣ .

It is proved using the Schwarz inequality (see your text).

The meaning of this uncertainty relation is as follows. First, the relation gives a

lower bound on the product of the two standard deviations. Since, by its definition, an
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uncertainty is greater than or equal to zero, if the lower bound provided by the right

hand side of the uncertainty relation turns out to be zero for the given operators and

the given state, then we learn nothing from the uncertainty relation. The lower bound

can vanish because (i) the commutator vanishes, and/or (ii) the expectation value of the

commutator vanishes in the chosen state. If this lower bound is not zero, neither of the

standard deviations can vanish in the given state. A necessary condition for this is that

the operators representing the observables do not commute. If they don’t commute, then

there is at least one state for which the right hand side of the uncertainty relation is not

zero. Such observables are called incompatible. If the operators commute commute, the

right hand side of the uncertainty relation is always zero; the corresponding observables A

and B are called compatible. Recall that the standard deviation of an observable vanishes

if and only if the state is an eigenvector of the observable. Consequently, if the uncertainty

relation is non-trivial, then it implies that neither of the observables in question are known

with probability one in the chosen state, and it gives some information on the relative

sizes of the standard deviations. Depending upon the commutator and the state, this

information may or may not be terribly useful.

The most striking results occur when the right hand side of the uncertainty relation is

non-zero and independent of the state. We will see an example below where this happens.

In this case, the standard deviations can never vanish, for any state. For such observables

it is always impossible to establish their values with probability unity! Moreover, if one

prepares a state with smaller and smaller standard deviation for one of the observables,

A, say, then the standard deviation of the other observable B will, eventually, have to

increase. Let us look at some examples.

The position-momentum uncertainty relation is especially dramatic since it is one where

the right hand side of the relation is non-zero and independent of the state. We have

[x̂, p̂] = ih̄1̂,

so in any state |ψ〉 (exercise),

σxσp ≥
1

2
|〈ψ| ih̄1̂ |ψ〉| = h̄

2
.

We have already explored this idea using the Fourier transform and Gaussian wave func-

tions in position and momentum space. (Review this now!) Note in particular that the

standard deviation of position and/or momentum can never vanish. This is equivalent to

the fact that the “eigenfunctions” of position and momentum do not really define normal-

izable functions, that is, they are not in the Hilbert space.

Another incompatible observable pair is x2 and p. We get

σx2σp ≥
1

2
|〈ψ| ih̄x̂ |ψ〉| = h̄

2
〈x〉.
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This uncertainty relation depends upon the state. For example, suppose the state is a

stationary state for the harmonic oscillator. It is not too hard to see that in any such state

〈x〉 = 0. So, the uncertainty relation is trivial for stationary states. On the other hand, for

a state that is a superposition of two stationary states, the expectation value of x can be

non-zero, as you have seen in your homework. Thus, for such a state, neither the standard

deviation of x2 nor that of p can vanish.

To understand a little better what is going on in the uncertainty relation, and in

particular why the commutator is appearing, let me remind you that an observable T is

known to take the (eigen)value λ with certainty (probability one) if and only if the state

of the system is an eigenvector |λ〉 of the corresponding operator T̂ . If two observables, A

and B, are both known to have values a and b with certainty, then the state of the system

|a, b〉 must be both an eigenvector of Â and of B̂:

Â|a, b〉 = a|a, b〉, B̂|a, b〉 = b|a, b〉.

This easily implies (exercise):

[Â, B̂]|a, b〉 = 0 =⇒ 〈a, b|[Â, B̂]|a, b〉 = 0.

We know that eigenvectors of a Hermitian operator form a basis for Hilbert space. It

is now worth noting a very important math fact: a necessary and sufficient condition for

two Hermitian operators Â and B̂ to admit a common basis of eigenvectors is that the two

operators commute. Commuting Hermitian operators represent compatible operators and

their common basis of eigenvectors are the states in which the two observables are known

with certainty.

Energy-time uncertainty relation

There is another kind of uncertainty relation that applies to energy and time. This

relation is sometimes presented as being the same type of relation we just described for

observables. While there are some superficial parallels, the time-energy uncertainty relation

is physically (and mathematically) quite different. In particular, the parameter we call

“time” is not treated in non-relativistic quantum mechanics as an observable of a system

(such as position and momentum are for a particle). So time is not represented as a linear

operator, and it does not have a probability distribution associated with a state, etc. The

time-energy uncertainty relation is nonetheless quite important, if a little more qualitative,

than the uncertainty relation for observables.

The basic idea of the time-energy uncertainty relation is quite simple. If a system

is in a state where the energy is known with probability one, i.e., a stationary state –

an energy eigenstate, then it remains there forever, i.e., doesn’t change. If the system
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is not in a stationary state, then the probability distribution for the energy observable –

the Hamiltonian H – has a non-zero standard deviation σH . As a result, the state of the

system changes in time (via the Schrödinger equation). Evidently there is some relation

between σH and the time evolution of a state. The time-energy uncertainty relation relates

the spread in energy σH ≡ ∆E to the scale of time ∆t it takes for the state of the system

to change appreciably from the initial state. For an appropriate choice of ∆t, this relation

is

∆E∆t ≥ h̄

2
.

The key step in deriving/interpreting the energy-time uncertainty relation is to figure

out how to characterize the time it takes for a state to “change appreciably”. Of course,

to determine what the state is doing we only have access to measurements of observables.

Let us focus on the time rate of change of the expectation value of some chosen observable

Q = Q(x, p) in the state represented by the wave function Ψ(x, t). I will now derive a

fundamental formula for this time rate of change. Start with

〈Q〉 = 〈Ψ, t|Q̂|Ψ, t〉 =

∫ ∞
−∞

Ψ∗(x, t)Q̂Ψ(x, t) dx,

so that

d

dt
〈Q〉 =

∫ ∞
∞

∂

∂t

(
Ψ∗(x, t)Q̂Ψ(x, t)

)
dx =

∫ ∞
∞

(
∂Ψ∗

∂t
(Q̂Ψ) + Ψ∗(Q̂

∂Ψ

∂t
)

)
dx.

Now, the time evolution of the wave function is controlled by the Schrödinger equation, so

we get
d

dt
〈Q〉 =

∫ ∞
∞

(
− 1

ih̄
(ĤΨ)∗(Q̂Ψ) + Ψ∗Q̂(

1

ih̄
ĤΨ)

)
dx.

Because Ĥ is Hermitian, we can move it to act on the other function in the product of the

first term: ∫ ∞
−∞

(ĤΨ)∗(Q̂Ψ) dx =

∫ ∞
−∞

(Ψ)∗(ĤQ̂Ψ) dx.

We then get
d

dt
〈Q〉 =

∫ ∞
∞

Ψ∗
i

h̄
[Ĥ, Q̂]Ψ.

This result,
d

dt
〈Q〉 = 〈 1

ih̄
[Q̂, Ĥ]〉,

is quite important irrespective of the energy-time uncertainty relation. By letting Ĥ take

its usual kinetic + potential form, and letting Q̂ be position or momentum, you reproduce

Ehrenfest’s theorem, of which the equation above is the general form. Also, you can see

that if Q is compatible with the Hamiltonian, so that [Q̂, Ĥ] = 0, then the expectation
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value of Q is independent of time – for any state. This is a signal that Q is a conserved

quantity. A trivial example of this is the energy itself. As another (almost trivial) example,

let Q be momentum and H the Hamiltonian for a free particle.*

Since all predictions about observables in quantum mechanics can be (if desired) framed

in terms of expectation values, the preceding formula is a fundamental expression of time

evolution in quantum mechanics. Let me give you the most general version of this result by

allowing the observable to explicitly depend upon time for its definition. If Q = Q(x, p, t),

e.g., Q = p2 + etx2. You can easily repeat the previous analysis to find:

d

dt
〈Q〉 = 〈 1

ih̄
[Q̂, Ĥ] +

∂Q̂

∂t
〉,

To get the energy-time uncertainty relation, we apply the general uncertainty relation

to the observables Q and H and use our fundamental identity, just derived. Suppose that

Q = Q(x, p), then (exercise)

σHσQ ≥
1

2
|〈[Ĥ, Q̂]〉| = h̄

2
|d〈Q〉
dt
|.

Define ∆t by

∆t ≡
σQ

|d〈Q〉dt |
.

You can see that ∆t is an estimate for the time it takes for 〈Q〉 to change by one standard

deviation. This choice of ∆t is useful since, if the original statistical uncertainty of Q is

σQ, then it hardly makes sense to say that Q has changed in a significant fashion until the

change is at least as big as the statistical uncertainty you started with. If we set ∆E ≡ σH ,

then we have (exercise)

∆E∆t ≥ h̄

2
.

This inequality has a simple enough meaning (which is often mis-stated): If the spread

of energies ∆E in the initial state is very small, then it will take a relatively long time

for observables to change appreciably. Conversely, if some observable changes very rapidly

then the spread of energies must be large. The precise estimate on ∆t depends upon the

observable and the state chosen. As an extreme limiting case, suppose the initial state is

a stationary state. Then ∆E = 0, and the energy-time uncertainty relation has ∆t→∞,

as you expect for a stationary state.

You can see from this discussion that the ∆t in the time-energy uncertainty relation is

not to be interpreted as some kind of statistical uncertainty in our knowledge of time, as

may be inferred from popular characterizations of this relation.

* The relative scarcity of interesting conservation laws (besides energy) for systems in one di-
mension arises from the small number of degrees of freedom, and occurs already classically.
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It is often said that the energy-time uncertainty relation means that you can violate

conservation of energy by an amount ∆E for a time ∆t. This is an extremely misleading

statement, and unless interpreted very carefully, just plain wrong. Beware of such state-

ments in the popular literature. For closed systems (with a time-independent Hamiltonian)

the energy is always conserved. The meaning of energy conservation in quantum mechanics

is twofold. First, the probability distribution of outcomes of energy measurements does

not depend upon time. This is the best you can hope for if the state of the system is not

one of definite energy. Second, if the state of the system is initially known to have some

fixed energy with probability one, then the initial state is a stationary state with that

energy, and remains so for all time. Thus if the initial energy is known to be E, then it

remains E for all time.*.

Let me exhibit a simple example of the energy-time uncertainty relation. Consider a

system with an initial wave function which is a superposition of two stationary states:

Ψ(x, 0) =
1√
2

(ψ1(x) + ψ2(x)).

You can easily check that, denoting the corresponding energies by E1 and E2, we have

〈H〉 =
1

2
(E1 + E2), 〈H2〉 =

1

2
(E2

1 + E2
2),

so that

∆E =
1√
2
|E1 − E2|.

According to the time-energy uncertainty relation, the initial state has changed appreciably

when

∆t ≥ h̄√
2|E1 − E2|

.

To check this with some observable, focus on position. Consider the probability density

for position at time t. Since

Ψ(x, t) =
1√
2

(
ψ1(x)e−

i
h̄E1t + ψ2(x)e−

i
h̄E2t

)
,

we have

ρ(x, t) =
1

2

[
|ψ1(x)|2 + |ψ2(x)|2 + 2< (ψ1(x)ψ∗2(x)) cos

(
E1 − E2

h̄
t

)]
.

At t = 0 the cosine is one; as time passes the cosine decreases, changing the probability

distribution for position. When

∆t =
h̄√

2|E1 − E2|

* All these statements are about time evolution between measurements.
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The formalism of quantum mechanics

the cosine term becomes cos(
√

2/2) ≈ 0.76.

Another example of the energy-time uncertainty relation is as follows. Consider a free

particle wave packet with standard deviation ∆x. We have seen that the peak of the

probability distribution in position space moves with some fixed (group) velocity v. How

long does it take for the wave packet to pass a given point? We can give an estimate of

this time by finding the time it takes for the expectation value of position to change by

one standard deviation. The packet moves with speed v, so the time is

∆t =
∆x

v
.

To check the energy-time uncertainty relation. Recall that the expectation value of mo-

mentum is 〈p〉 = mv; the expectation value of energy is 〈E〉 =
〈p2〉
2m . The energy, like the

momentum, has a standard deviation, which we can estimate as (exercise):

∆E =
〈p〉
m

∆p.

Of course, all of this can be worked out more precisely, but the estimates are good enough

for our discussion. Given our estimates, the uncertainty product is

∆E∆t =
〈p〉
m

∆p
∆x

v
= ∆x∆p ≥ h̄

2
,

which is consistent with our general result.

Another way the energy-time uncertainty relation is used is to describe decay processes.

Suppose a particle is known to decay with a half life of ∆t. If you measure the rest energy

mc2 of the particle you will find a statistical distribution with standard deviation ∆E.

The relation between ∆E and ∆t will be found to be

∆E∆t ≈ h̄ ≥ h̄

2
.

Thus the longer the lifetime of a particle, the more well defined is its rest energy. A similar

effect is observed when measuring energy levels of atoms. As you know, because of the

coupling of the atom to the electromagnetic field, the excited states are not stable, but

will in general decay to lower energies by emitting one or more photons. The lifetime of

a given energy level depends upon the detailed properties of that state. What is observed

is that the measured energy of a given level has a certain intrinsic spread ∆E (standard

deviation), which is inversely proportional to the half-life ∆t of the state, such that

∆E∆t ≈ h̄.

The more long-lived is the excited state, the more precisely defined is its energy.

You can see that the energy-time uncertainty relation can be used in a variety of ways.

The various applications depend upon what observable you are using to characterize ∆t.
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