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Relevant sections in text: 1.1 – 1.6, 2.1

The wave function

We will now create a model for the system that we call a “particle in one dimension”. To

do this we should define states and observables. Let’s start with the quantum mechanical

notion of “state”.

The state of a quantum system determines, and is determined by, the probability

distributions for measurements of all possible observables. Section §1.3 in the text has a

nice, brief review of probability concepts. You should read it. I will try to introduce the

main concepts as we go.

To begin, we need a definition and an interpretation of “probability”. A probabil-

ity is a number between zero and one that expresses the likelihood of the outcome of a

particular measurement compared to all possible outcomes of the measurement. Thus, as

you all know, the probability that a flipped coin will land “heads” is 1/2. A more precise

interpretation of probability which we shall use in this course, known as the “frequency

interpretation”, is not without pitfalls. We shall adopt it because it is quite close to what

is done experimentally.

If Pa is the probability of getting the outcome “a” of some measurement (e.g., heads)

out of all possible outcomes of the measurement, then we expect that if the system is

repeatedly prepared in the same state and the measurement repeated (“do the experiment

many times”) then the outcome a will be found in a fraction Pa of experiments, provided

we do many experiments. The collection of all probabilities as a function of measurement

output is the probability distribution. For a flipped coin the probability distribution for the

observable “heads or tails” is, of course 1/2 for heads and 1/2 for tails. Note that the total

probability for getting either heads or tails is just the sum of the two probabilities, namely

unity. This reflects a general result: the probability for a collection of possible outcomes

to occur is just the sum of the probabilities of each outcome individually. If one considers

all possible outcomes the probabilities must add up to one. If one considers some subset

of possible outcomes the probabilities still add, but they need not add up to one. So, for

example, the probability that a roll of a die will come up with a one is 1/6, the probability

that it will come up with 1 or 2 is 1/6 + 1/6 = 1/3 and so on. In a similar vein, you

probably know that the probability that, in two tries, a flipped coin will come up heads is
1
2 ×

1
2 = 1

4 . Thus we see another important probability rule: the probability for a sequence

of outcomes is the product of each individual probability in the sequence. You can use

the rule: probability for result “a” or result “b” is Pa + Pb; probability for result “a” and

result “b” is Pa × Pb.
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In quantum mechanics, there is a variety of equivalent mathematical representations

of the state of a system. The oldest representation is due to Schrödinger, in which one

specifies the state of the system at a given time by specifying a wave function. This is a

complex-valued function of position. In our temporarily one-dimensional universe we write

ψ = ψ(x) = f(x) + ig(x),

where f and g are real functions and x is a real number representing the possible outcomes

of a position measurement for the particle at the given time. Sometimes this kind of wave

function is called a “coordinate” or “position” wave function.

This representation of the state is designed to make the computation of probability

distributions for the position observable particularly simple. In detail, the probability

ρ(x)dx for finding the particle to be between x and x+ dx is defined to be

ρ(x)dx = |ψ(x)|2dx.

The square of the absolute value of the function ψ,

ρ(x) = |ψ(x)|2,

is a positive, real-valued function called the probability density for position.

The probability P (a, b) that the particle is in a region, x ∈ [a, b], is obtained by adding

up the probabilities, that is, integrating the probability density over the region:

P (a, b) =

∫ b

a
|ψ(x)|2dx.

We assume that the particle always exists somewhere, that is, if we look throughout

the universe (or the region of interest) we will eventually detect the particle. In other

words, the probability for finding the particle in the universe is unity:*∫ ∞
−∞
|ψ(x)|2 dx = 1.

This relation is described by saying that ψ is normalized. You can see that normalization

of the wave function captures the idea that the probability obtained by adding up the

probabilities for all possible locations of the the particle is unity.

Note that any function whose absolute value-squared can be integrated over all x (or

in the region of interest) to get a finite result can be turned into a wavefunction. Such

* If the particle is to be confined to a given region – not necessarily the whole real line –
then the integral over that region should be unity.
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a function is called normalizable or square-integrable. Let φ(x) be such a function. We

suppose that ∫ ∞
−∞
|φ(x)|2 dx = C

exists, i.e., C <∞. For any square-integrable function we can define a corresponding wave

function by normalizing φ, this means we define

ψ(x) =
1√
C
φ(x).

You can easily check that ψ is normalized.

HOMEWORK PROBLEM: Consider the following two functions

(a) φ(x) = i
1+|x| ,

(b) φ(x) = e−x
2
.

Are they normalizable? If so, normalize them.

Expectation value of position and functions of position

When we make a measurement of an attribute of a physical system we normally get

some real number. Typically, we repeat the experiment many times and take an average

in order to take account of fluctuations in the value of the observable introduced by,

experimental error, extraneous uncontrollable influences, etc. This average is called the

expectation value of the observable. If we know the probability distribution for all possible

outcomes of the measurement, we can compute the expectation value by adding up all

possible values of the observable with each term in the sum weighted by the fraction of

measurements that such values occur (the probability).

Exercise: Show that this is indeed a correct way to compute the average.

Let us apply this idea in the context of a position measurement. Given a state ψ(x),

the expectation value of x in this state, denoted by 〈x〉, is given by

〈x〉 =

∫ ∞
−∞

x|ψ(x)|2 dx.

Thinking of the integral as a continuous form of a summation, we see that we are indeed

adding up all possible values of the observable (this is the x in the integrand) weighted
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by the probability of finding the particle with position between x and x + dx (this is the

|ψ(x)|2dx in the integrand).

Likewise, given any observable built as a function f(x) of position, the expectation

value of f(x) in the state represented by ψ(x) is

〈f(x)〉 =

∫ ∞
−∞

f(x)|ψ(x)|2 dx.

The notion of expectation value is extremely important to the physical output of

quantum mechanics. It turns out that all physical predictions of quantum mechanics can

be phrased in terms of expectation values. To see what I mean, let’s construct an observable

whose expectation value gives the probability P (a, b) for the particle to be found in the

interval (a, b). Let the function f(x) be given by

f(x) =
{

1, if x ∈ [a, b];
0, otherwise.

View this function as a quantum mechanical observable, as mentioned above. It is easy to

see that the expectation value of f is just the probability that x lies in [a, b]:

〈f〉 =

∫ ∞
−∞

f(x)|ψ(x)|2 dx =

∫ b

a
|ψ(x)|2 dx.

A physical interpretation/application of this observable is that it describes the results

of a simple laboratory experiment in which we have a detector which can detect particles in

the region x ∈ [a, b]. The detector “clicks” (modeled by f = 1) if a particle passes through

the indicated region. The detector is silent (modeled by f = 0) otherwise. Suppose we

know (never mind how!) that a particle is in the state given by the wave function ψ(x) at

some given time. Either the detector clicks or it doesn’t. We repeat this experiment (with

the same set up – the same state ψ) many times and average the results. We find that 〈f〉
(with f as defined above) is the fraction of experimental runs in which the detector clicks

(exercise).

Dynamics: The Schrödinger equation

We have introduced a description of the state of a system via the wave function. In

physics, we normally view the state of a system as being associated with a given time. For

example, we mentioned that the state of a particle in classical mechanics can be specified

by the position x and momentum p (or velocity); of course these observables can (and

usually do) change in time. In classical mechanics the physical law governing the change

in state in time is presented in the form of a differential equation, the equation of motion
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for the state (x(t), p(t)) as a function of time. For example, for a particle moving in a force

derivable from a potential energy function V (x, t), we have

dx

dt
=

p

m
dp

dt
= −∂V

∂x
.

I chose to write the equations of motion as a pair of first-order differential equations in time*

to emphasize the fact that the solution is specified once initial conditions (x(0), p(0))–the

initial state–is specified. The differential equations of motion specify the dynamical law

for the state of the system.

In quantum mechanics the role of the dynamical law is played by the Schrödinger

equation. It determines the state – represented by the wave function ψ(x, t) – as a function

of time. For a non-relativistic particle with mass m (we shall always use the non-relativistic

approximation), the Schrödinger equation is determined by the choice of potential energy

function V (x, t). Given the potential energy, we have

ih̄
∂ψ(x, t)

∂t
= − h̄

2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t).

Here h̄ is a fundamental constant of nature usually called “h-bar” or Planck’s constant.

Numerically,

h̄ = 1.05457× 10−34J s.

(Actually, h̄ is Planck’s original constant – denoted h – divided by 2π: h̄ = h
2π .)

Roughly speaking, Planck’s constant controls the regime in which quantum corrections

to classical mechanics become important. Note that h̄ is very small in typical macroscopic

units of Joules and seconds. This corresponds to the fact that quantum effects are typically

negligible for macroscopic phenomena. Of course, the fact that Planck’s constant is small

in SI units does not really mean that the number is unambiguously small. We can make

Planck’s constant take on any value we want by a suitable choice of units (exercise). There

is a valuable lesson here: numerical quantities with units are never “large” or “small” since

the numerical value depends upon units. Only dimensionless ratios are unambiguously

large or small. At this point you should be wondering what dimensionless number is “small”

(“large”) when classical (quantum) mechanics is correctly describing a system. This is a

slightly delicate question. For now we simply mention that the classical approximation is

appropriate when the ratio of h̄ to the classical action integral is very small.

The Schrödinger equation (SE) is a linear partial differential equation with variable

coefficients (thanks to the potential). Linearity means that if ψ1 and ψ2 are solutions, then

so is

ψ3 = aψ1 + bψ2,

* These are the Hamilton equations of motion.
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where a and b are any complex constants.

Because the SE is first-order in time, the wave function is uniquely determined by the

SE once its initial value ψ(x, 0) is specified. We give the initial state of the system and

the dynamical law determines the state for all time. Thus if the probability amplitude

for position measurements is given initially, we can solve the SE and find the probability

amplitude for position measurements at any other time. Because the SE also involves

space derivatives, we will also have to give spatial boundary conditions to solve the SE.

Soon we shall consider a variety of examples of solving the initial-boundary value problem

for the Schrödinger equation.

There is one more dynamical rule in quantum mechanics that we must introduce. Its

philosophical interpretation is still actively debated, but its experimental status is well-

confirmed. This rule says: If you make a measurement at time t0 and find the particle at

a position x0, then a measurement of position made immediately afterward must still give

x0. Thus we say that the wave function ψ(x, t) “collapses” at t0 to a δ-function δ(x− x0).

We will have more to say about the δ-function and the interpretation of the “collapse

postulate” later.

Probability conservation

Recall that the state of the system, represented by the wave function ψ(x) must be

normalized: ∫ ∞
−∞
|ψ(x)|2 dx = 1.

This is necessary for the probability interpretation of the state. Now we have an interesting

problem. The SE is supposed to determine a 1-parameter family of states, ψ(x, t). If the

initial state is normalized, will subsequent states also be normalized? This is non-trivial

because the normalization condition is non-linear and may not be compatible with the

linear SE. We now show that, with appropriate boundary conditions, the normalization of

the wave function is preserved. More precisely, we now show that

d

dt

∫ ∞
−∞
|ψ(x, t)|2 dx = 0.

One says that “probability is conserved”.

To see this, we derive a continuity equation for the probability density. Consider the

time rate of change:
∂

∂t
(ψ∗ψ) = ψ∗

∂ψ

∂t
+ ψ

∂ψ∗

∂t
.

If ψ satisfies the SE we can compute this time rate of change. First, we need (exercise)

∂ψ∗

∂t
= − ih̄

2m

∂2ψ

∂x2
+
i

h̄
V ψ∗.
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We now have (exercise)

∂

∂t
(ψ∗ψ) =

∂

∂x

[
ih̄

2m

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)]
.

We call

j = − ih̄

2m

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)
the probability current for the wave function ψ(x, t). Thus

d

dt

∫ ∞
−∞
|ψ(x, t)|2 dx =

[
ih̄

2m

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)]x=∞

x=−∞
,

where we have substituted via the probability current and integrated by parts in the x

integral. If ψ(x, t) is to be normalizable, then |ψ(x, t)| must vanish as x approaches ±∞.

Let us assume that ψ is obtained by solving the SE using this boundary condition. Then

the boundary term above must vanish and

d

dt

∫ ∞
−∞
|ψ(x, t)|2 dx = 0.

We conclude that if ψ is normalized at any one time, it stays normalized for all time

provided we solve the SE with the asymptotically vanishing boundary conditions.

Let us see why j is called a probability current. We do this via Problem 1.14 in the

text. Consider the probability Pab that x ∈ [a, b]. We have

Pab =

∫ b

a
ρ(x) dx =

∫ b

a
|ψ|2 dx.

We assume that ψ solves the SE. Thus the probability density satisfies

∂ρ

∂t
+
∂j

∂x
= 0,

where

j = − ih̄

2m

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)
.

Then (exercise)

dPab
dt

=

∫ b

a

∂ρ

∂t
dx

= −
∫ b

a

∂j

∂x
dx

= j(a, t)− j(b, t),
We interpret this as saying that j(a, t) and j(b, t) are the “flow” or “current” of probability

through the boundary x = a and x = b of the region [a, b]. Thus the change of probability
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in [a, b] in time is completely controlled by the net flux of probability through the boundary

of this region.

The momentum

We now give an introduction to the mathematical representation of the momentum

observable for a particle in the context of the wave function description of the state. A

complete definition would allow us to compute from ψ the probability distribution for

momentum. We shall do this later. For now, we consider a simple (but important) feature

of this probability distribution. We postulate that the expectation value of momentum,

〈p〉, in the state ψ is given by

〈p〉 =

∫ ∞
−∞

ψ∗
h̄

i

∂ψ

∂x
dx.

It is possible to give detailed justifications for this definition. But I emphasize that one

cannot really “prove” this formula; it is part of the rules of quantum mechanics. If this

disturbs you, take note that while we define the momentum to be mẋ in classical mechanics,

this is not something you can really prove, but rather it is a useful definition. Take the

same point of view for our definition above.

Despite what I just wrote, it is worth giving some justification for this definition. Given

the state ψ(x, t) as a function of time, derived from the SE, consider the time rate of change

of the expectation value of position (exercise):

d〈x〉
dt

=

∫ ∞
−∞

x
∂ρ

∂t
dx

= −
∫ ∞
−∞

x
∂j

∂x
dx

= −
∫ ∞
−∞

j dx+ [xj]∞−∞ .

In the last equality I integrated by parts. The endpoint term vanishes since we assume

boundary conditions such that j vanishes as x→ ±∞. Thus we have

d〈x〉
dt

=

∫ ∞
−∞

j dx.

Now consider the integral of j; we can integrate by parts here, too. Integrate by parts in

the first term below; you get (good exercise)∫ ∞
−∞

ih̄

2m

(
ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x

)
dx = −ih̄

m

∫ ∞
−∞

ψ∗
∂ψ

∂x
dx.
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If we define the expectation value of momentum to be mass multiplied by time rate of

change of expectation value of position (which is what the experimentalist might well do),

then we do indeed have (exercise)

〈p〉 =

∫ ∞
−∞

ψ∗
h̄

i

∂ψ

∂x
dx.

Observables as operators

So far I have explained how to compute the expectation value of position (and functions

of position) and I have shown how to compute the expectation value of momentum. There

is an important organizational principle operating here that is central to the formalism

of quantum mechanics. The idea is that the position and momentum observables can be

mathematically represented by linear operators. Later we will spend considerable time

exploring this, for now I will just introduce the basic idea.

Consider a wave function ψ. We can make another function by multiplication by x, to

which we give the slightly cumbersome designation x̂ψ, :

ψ(x) −→ (x̂ψ)(x) := xψ(x). (1)

This new function denoted by x̂ψ will in general be neither normalized nor normalizable

(exercise). But let us suppose that ψ(x) vanishes fast enough at infinity so that (x̂ψ)(x)

is normalizable, for example,

ψ(x) =

(
2

π

) 1
4

e−x
2
, (x̂ψ)(x) =

(
2

π

) 1
4

xe−x
2
.

(You should definitely check that ψ(x) is normalized and that x̂ψ is indeed normalizable.)

We say that the linear operation (1) “represents” the position observable. More explicitly,

we say that position is represented on wave functions by the linear operation of “multi-

plication by x”. We denote this operation by x̂, and view x̂ψ as the result of x̂ operating

on ψ. The hat is to remind us that we are defining an operator. You might justifiably

feel that this is a little overkill with the notation. When we discuss momentum below the

notation will be a little more useful.

More generally, observables obtained as functions f(x) of the position are represented

by the operator

ψ(x) −→ (f̂ψ)(x) := f(x)ψ(x).

In particular, if V (x) is the potential energy function for a particle, the potential energy

operator is

(V̂ ψ)(x) = V (x)ψ(x).
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Similarly, we say that momentum is represented by a differentiation operation. Given

any wave function ψ(x) we define the momentum operator p̂ as the linear operation

ψ(x) −→ (p̂ψ)(x) :=
h̄

i

∂ψ

∂x
.

Here we use the partial derivative since we may want to consider a 1-parameter family of

states ψ(x, t) representing states at various times.

We can also use the “momentum = derivative” rule to define observables that are

functions of momentum. To be sure, this is a bit more tricky than the analogous situation

with the position observable. (How to define cos(p)?) But for simple observables, things

are pretty easy. For example, you know that in classical mechanics the kinetic energy T

is one-half the square of the momentum divided by the mass. The corresponding kinetic

energy operator is given by

(T̂ψ)(x) := (
1

2m
p̂2ψ)(x) = − h̄

2

2m

∂2ψ

∂x2
.

More complicated functions of momentum can be defined, but the definition is a little too

technical for now.

From this we see that the Schrödinger equation can be viewed as

ih̄
∂ψ

∂t
= Ĥψ,

where
(Ĥψ)(x) = (T̂ψ)(x) + (V̂ ψ)(x)

= − h̄
2

2m

∂2ψ

∂x2
+ V (x)ψ(x).

The linear operator Ĥ is known as the Hamiltonian operator.* One says that “the Hamil-

tonian generates time evolution”, since the infinitesimal change in the state in time is

equated to the action of the Hamiltonian operator on the state.

Using the organizational principle “observable ↔ operator” we can rewrite our expec-

tation value formulas in a universal way (exercise):

〈x〉 =

∫
ψ∗(x)(x̂ψ)(x) dx,

〈p〉 =

∫
ψ∗(x)(p̂ψ)(x) dx,

* You can see that the Hamiltonian operator represents the total energy of the particle. As
you may recall from classical mechanics, the energy expressed as a function of coordinates
and momentum is often called the Hamiltonian.
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〈T 〉 =

∫
ψ∗(x)(T̂ψ)(x) dx,

and so on. I have used the hat notation to indicate a linear operator; eventually one gets

used to the operator idea and drops the hats when convenient.

Finally, I assert that—with one important caveat—we can represent the expectation

value of an observable defined as a function Q(x, p) of position and momentum (thus any

observable you can think of in classical mechanics) via

〈Q〉 =

∫
ψ∗(x)

[
Q(x,

h̄

i

∂

∂x
)ψ(x)

]
dx.

Here the formula says to replace position with multiplication by x and momentum by the

derivative operator. We will have a chance to get more familiar with this type of formula

later. For now, simply note that the Hamiltonian is such an operator, and the expectation

value is computed as indicated.

The problem with this last definition is that the expression of a function of coordinates

and momentum as an operator can be ambiguous. Consider the classical function Q = xp.

As written, an operator representative is x̂p̂, that is

(x̂p̂)ψ =
h̄

i
x
∂ψ

∂x
.

But an equally valid classical way of writing the same function is Q = px, which we would

write as

(p̂x̂)ψ =
h̄

i

∂(xψ)

∂x
.

These two operators are not the same. To see this, we compare their actions on a wave

function ψ(x):

(x̂p̂ψ)(x) =
h̄

i
x
∂ψ

∂x
,

(p̂x̂ψ)(x) =
h̄

i

∂(xψ)

∂x
,

=
h̄

i
x
∂ψ

∂x
+
h̄

i
ψ

= (x̂p̂ψ)(x) +
h̄

i
ψ(x).

Evidently,

(x̂p̂ψ)(x)− (p̂x̂ψ)(x) = ih̄ψ(x).

Formally, we denote this relationship as

x̂p̂− p̂x̂ = ih̄1̂,
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where “1̂” is the identity operator* We say that “the operators corresponding to the posi-

tion and momentum do not commute”. This mathematical fact means that the quantum

mechanical representation of classical observables is not uniquely defined; one has to make

a choice, and this has physical consequences. This ambiguity is called the “factor ordering

ambiguity”. You can think of the difficulty conceptually as follows. Classical mechan-

ics can be viewed as an approximation of quantum mechanics. Consequently, not all of

the rules of quantum mechanics can be deduced from classical mechanics, instead, the

converse holds. The representation of observables (as operators) in quantum mechanics

is not unambiguously determined from their representation (as real numbers) in classical

mechanics. The text is a bit misleading on this point.

The failure of operators representing observables to commute is at the heart of many

of the profound physical features of quantum mechanics. Indeed, the next topic I shall

introduce, the uncertainty principle, arises from precisely this fact, although I shall not

prove this until later.

The uncertainty principle

We have seen how to extract some (probabilistic) information about position and mo-

mentum observables using the wave function. In general, the state of a quantum mechan-

ical particle is not associated with a specific value of the coordinate or momentum, but

rather with a distribution of values with varying probabilities. To be sure, one can imagine

a wavefunction that describes a “well-localized” position or momentum. Just imagine a

(normalized) function whose absolute value is non-zero only in some small region in po-

sition space. Later we will see how to build a state which has, likewise, a well-localized

momentum distribution. However, there are limits to how well-localized these observables

can both be. Consideration of this issue leads to the first instance of the uncertainty

principle. Let us look at a simple example; we defer a systematic treatment until later.

Let us use for the wave function (at a given time)

ψ(x) =
1

π1/4
√
d
e
− x2

2d2 .

You can check as an exercise that this function is properly normalized. If you graph

this function you will find that it is a bell-shaped curve, a “Gaussian”, centered around

x = 0. The width of the “bell” is controlled by the width d. Physically, this wave function

represents a state in which the particle has a relatively small probability for being found

at locations farther from the origin than x ± d. If d is made small enough, this is a state

describing a particle with a pretty well-defined position (approximately x = 0).

* It is a common notation to suppress the writing of the identity operator, just writing
x̂p̂− p̂x̂ = ih̄.
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We can characterize the width of the probability distributions for position and mo-

mentum using the idea of dispersion, also known as variance. The dispersion in position

is defined to be

∆x2 = 〈x2〉 − 〈x〉2.

It is easy to check that the expectation value of x vanishes:

〈x〉 =

∫ ∞
−∞

1

π1/2d
exp{−x

2

d2
}x dx = 0.

This follows because there is an equal probability for any values x and −x, so the average is

zero. The width or “spread” of this Gaussian probability distribution is therefore controlled

by the expectation value of the square of position. We get

〈x2〉 =

∫ ∞
−∞

1

π1/2d
exp{−x

2

d2
}x2 dx =

d2

2

The variance for the Gaussian state is thus simply

∆x2 =
d2

2
.

We see that the dispersion does indeed grow as d grows; it reflects the “uncertainty” in

position given the state ψ.

Now let us consider the dispersion in momentum. This is not too hard. The expectation

value of momentum in the Gaussian state is (exercise)

〈p〉 =

∫ ∞
−∞

1

π1/2d
exp{−x

2

d2
}(− x

d2
) dx = 0.

Here I took the derivative for you. Again, this means that the Gaussian state has equal

probability for momentum p and −p. The dispersion in momentum for this state comes

from the expectation value of the square of the momentum. This is not too hard to

calculate; you should try it as an exercise. You will find:

〈p2〉 =
h̄2

2d2
.

You can compute this by applying two derivatives, where you get (i) the same kind of

integral we had for 〈x2〉, (ii) a normalization-type integral. Hence

∆p2 =
h̄2

2d2
.

Here we see something interesting: the momentum dispersion decreases with increasing d.

Indeed, we have

(∆x2)(∆p2) =
h̄2

4
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so that the product of the momentum and position variances is a constant! This means

that if we try to limit the “uncertainty” in the position by choosing a state with smaller

d, then the “uncertainty” in the momentum must grow, and vice versa. Thus, at least

for the Gaussian states, it is impossible to know “with certainty” (probability one) both

the momentum and position. What I mean by this is that if you prepare a state with a

well-localized position (momentum) so that many measurements of identically prepared

particles give with probability near unity that the position is, say, at x = 0, then the

momentum will have a very large spread of values (in the same state) with appreciable

probability. Of course, the converse holds as well, with position and momentum inter-

changed. Somehow, the position and momentum observables are incompatible.

Everything we just did applied to only a single possible state of the particle (the

Gaussian state). Later we shall prove that, no matter the state, for position and momentum

the product of the dispersions must satisfy

(∆x2)(∆p2) ≥ h̄2

4
.

This called an uncertainty relation, and the idea that certain observables are incompatible

in the above sense is called the “uncertainty principle”. We shall also see that uncertainty

relations are not confined just to position and momentum observables.

Let us make it clear what the uncertainty principle for position and momentum does

not say. It is a popular misconception that the uncertainty principle means that “position

is uncertain”, or “momentum is uncertain”, in the sense that one can never measure these

observables with arbitrary accuracy. This is false. The “uncertainty” being discussed

corresponds to the statistical spread of results you will get by measurements of position

and momentum (as accurately as you like) in a series of experiments in which you always

have the particle in the same state. One can certainly have states in which the statistical

uncertainty in position is arbitrarily small. One can certainly have states in which the

statistical uncertainty in momentum is arbitrarily small. One cannot have states in which

the uncertainty in position and momentum is arbitrarily small.
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