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Introductory Remarks

This is probably your first real course in quantum mechanics. To be sure, it is un-

derstood that you have encountered an introduction to some of the basic concepts, phe-

nomenology, history, and so forth, of quantum mechanics in a course on “modern physics”.

But this is presumably your first chance to get your hands dirty and see to some extent

how the theory really works. Although you should have encountered already a survey of

the key experimental underpinnings of quantum mechanics, it is worth setting the stage

by giving some introductory remarks on what quantum mechanics is and why we use it.

Of course, these remarks, at best, can serve only to whet your appetite.

Quantum mechanics – and, in particular, its extension to quantum field theory – is

used to give a microscopic description of matter and its interactions at or below atomic

length scales. It is the currently accepted description based upon extensive experimental

investigation. Nevertheless, the way in which quantum mechanics describes nature is

sufficiently different from successful descriptions of macroscopic phenomena (e.g., from

classical mechanics), that I feel obliged to justify the existence of the subject to you. The

word “macroscopic” is an important clue to the need for quantum mechanics.

Consider a classical description of the structure and interactions of matter. Normally,

one assumes that matter can be broken into “small” constituents, the “particles”, which

obey some set of physical laws (e.g., Newton’s laws), and from which the behavior of

matter can be explained and predicted. Of course, one can always imagine subdividing the

previous constituents into a new set of “smaller” particles, etc. One logical possibility is

that Newton’s laws continue to hold at smaller and smaller length scales. If this is the case,

then there is apparently no end to the classical reductionist approach to describing matter.

In classical mechanics the explanation of phenomena involving “large” objects by simple

laws describing the “small” objects is an infinite regression. Still, as I said, it is possible

the universe could have been set up along these lines. But according to experiment it isn’t.

The laws of nature do not seem amenable to an analysis along the lines just presented.

There is a real distinction between macroscopic and microscopic phenomena. Macroscopic

phenomena seem well-described by the laws of classical mechanics, while microscopic phe-

nomena require a different set of laws, the laws of quantum mechanics being the current

best set. In particular, at sufficiently small length scales it becomes clear that there are

fundamental limits to our ability to make certain kinds of basic measurements – an ability

that is taken for granted in classical mechanics. For example, the position and momentum

of a particle are the basic observables of classical mechanics; the laws of classical mechanics

naturally deal with the time evolution of these observables. In particular, by knowing the
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position and momentum at one time one can, using for example Newton’s laws, deduce

the trajectory of the particle in space for all time, hence the position and momentum (and

any other observables) are known for all time. All this is quite familiar to you. It is tacitly

assumed in classical mechanics that it is possible to determine with arbitrary accuracy

the position and momentum of a “particle” at any given time. However, when describing

microscopic systems, e.g., atoms, it turns out that it simply is not true that, say, the elec-

tron has a sharply defined position and momentum at any given time. Consequently, the

organization of the theory describing the atom in terms of position and momentum of its

constituent particles is simply not appropriate. As you probably have heard, if the position

of a particle is determined with great accuracy, the momentum has a wide variety of pos-

sible values, and vice versa. This is the celebrated “uncertainty principle”, which we shall

make more precise later. The uncertainty principle applies to a variety of observables—

not just position and momentum; many of the “classical” attributes of particles cannot

be determined with complete accuracy in the usual classical sense–even in principle. For

this reason there is no compelling reason to expect that these attributes (such as position

and momentum) are intrinsically part of a “particle”; something else may serve better to

describe matter.

Evidently, there is a real distinction between large and small in the universe. One might

say that “large” objects can have their classical observables (e.g., position and momentum)

determined at a given time with very, very good accuracy. “Small” objects are such that

it is impossible to measure the position without disturbing the momentum and vice versa.

In a real, operational sense, one must give up our classical notions of particles as “objects”

that have a definite position, momentum, and so forth, at least in the classical sense. If

position and momentum are denied their classical existence, then it follows that particle

trajectories (defined by Newton’s second law) are denied a microscopic existence. The

usual modus operandi of classical mechanics is simply not available and a new mode of

description of nature will be needed. Such a mode is provided by the (at first sight, rather

bizarre) laws of quantum mechanics.

An illustrative thought experiment

To illustrate the above remarks, I would like to briefly discuss some thought experi-

ments (blatantly stolen from the Feynman Lectures), that will perhaps make the point bet-

ter than my clumsy pseudo-philosophical arguments. These are variations on the famous

“double slit experiments”, which you may have encountered in a previous introduction

to quantum mechanics. The “experiments” I will describe are over-simplifications of real

experiments.

We shall consider a thought experiment in which we send a beam of particles through

a barrier with two openings, the “slits”. We shall first indicate what would be seen in a
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macroscopic context, which will be pretty believable given our experience with everyday

mechanical phenomena. We then discuss what would be seen in a microscopic context; the

result is very surprising from the point of view of classical mechanics.

Macroscopic version

Let us fire a steady stream of bullets at an indestructible partition with two holes just

big enough to let the bullets go through. We assume that the gun firing the bullets sprays

them with some angular spread so that it is possible that a given bullet could go through

either hole. On the other side of the barrier there is a backstop that stops the bullets so

that at any time we can have a look and see how many bullets went where. You can easily

guess what will happen. Bullets will either pass through the holes, be “reflected” by the

partition, or perhaps scatter from the edge of a hole either backward or forward. What

is seen at the backstop? First of all, for sufficiently short time intervals, only one bullet

impact is detected during the time interval. Thus the impacts come in discrete lumps,

which confirms our understanding that bullets are localized in space at any given time.

To further quantify the results of this experiment we introduce (somewhat informally

for now) the notion of probability. If we pick a spot on the backstop, after a fixed amount of

time we can count how many bullets hit that spot. If we take the ratio of this number to the

total number of bullets that hit the backstop in that time interval we can interpret the ratio

(for a large enough total number of bullets) as the chance that the bullet was scattered

to our chosen spot. This ratio is a real number between 0 and 1 and is the probability

for scattering the bullet to the given location. If we graph the probability as a function

of position we find a curve with a maximum centered between the slits and decreasing

monotonically as we move away from the center. This is the probability distribution for

finding a bullet in the backstop.

Finally, it is useful for later comparison to repeat the experiment with one of the slits

closed. Then, of course, the bullets can only pass through the open slit and we obtain

a probability distribution that is qualitatively similar to the one we just found, but now

centered directly behind the open slit.

Let us call the probability distribution for each slit P1(x) and P2(x), where x locates

positions from the center point between the slits. The distribution P1 is measured with

slit number 2 closed, etc. Let us denote the probability distribution obtained with both

slits open by P (x). Given your everyday experience with macroscopic objects, it will not

surprise you that P is the sum of P1 and P2.

To summarize: the results of the experiment are that bullets arrive at the backstop in

discrete “lumps”, and the probability P (x) for finding a bullet at the location x is given
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by

P (x) = P1(x) + P2(x).

Of course, we interpret this result by noting that a bullet must have traveled through

either slit 1 or slit 2, and the total probability is just the sum of the probability for these

mutually exclusive processes.

Microscopic version

Let us now repeat this experiment using electrons and very small slits. Now we must

use a more sophisticated means of detecting the electrons (e.g., a Geiger counter), but let

us not worry about the technicalities. To begin with, we note that the detector “clicks” in

a discrete fashion, which is consistent with our view of the electron as a discrete, lump of

matter. Next, let us try the experiment with only one slit open. As before, we find that

the probability distributions P1 and P2 to be peaked at the x location of slit 1 and slit 2,

respectively, with a monotonic decrease away from the peak. Now we try the experiment

with both slits open. Here is where nature is surprising. Instead of a peaked distribution

corresponding to the sum of P1 and P2 we find instead an oscillatory pattern within an

envelope that is peaked about x = 0. This oscillatory pattern is exactly like that which

occurs in the amplitudes of waves (e.g., water or light) that are passed through a barrier

with two slits. In the wave case we interpret the oscillating pattern in terms of interference

of the waves scattered from the two slits.

It is possible to cook up a mathematical description of the electron experiment to

match the interference pattern of waves if we assign a complex “amplitude” ψ1 to the

waves passing through the first slit and ψ2 to those passing through the second slit. The

total amplitude is then the sum:

ψ(x) = ψ1(x) + ψ2(x).

The probability P (x) for finding an electron at detector location x will take the desired

oscillatory pattern if we define

P (x) = |ψ1(x) + ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 + 2Re[ψ∗1(x)ψ2(x)].

We can view the first two terms as representing the probability distributions coming from

electrons that pass through slit 1 and slit 2 respectively. Indeed, if we cover up one of the

slits, say slit 2, then we get P (x) = |ψ1(x)|2. However, because of the last “interference”

term, we cannot ascribe the total probability distribution when both slits are open to the

effects of each slit separately. In effect, this experiment prevents us from saying that the

electrons always travel through slit 1 or slit 2. Our classical picture of electrons as just

small “bullets” has not been supported by experiment.
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It is worth trying to see what happens if we attempt to track the electrons to see

through which slit they pass. We can imagine shining a light over each slit and, for a

sufficiently small intensity of incident electrons, “see” the electron pass through a slit and

then record its location with our detector. The result is that the interference pattern

disappears and we get

P (x) = |ψ1(x)|2 + |ψ2(x)|2.

This result might be explained by supposing that by shining the lights we have affected

in some noticeable way the movement of the electrons. If the electrons were “classical”

particles, like bullets, we could simply make our light weak enough so that we disturb

the particles by an arbitrarily small amount in the process of seeing which slit they went

through. For classical particles this is ok and is compatible with the observed probability

distribution. With electrons, however, no matter how weak we make the measuring dis-

turbance we get the classical distribution; but if we do not measure which slit the particles

went through we get the new, oscillatory distribution. Thus it is problematic to suppose

that the electron actually passes through just one of the slits in the original experiment. It

is simply not a good description of microscopic particles, such as electrons, to have them

behave as just some small classical bullets. A new, profoundly different way of describ-

ing (indeed, defining) microscopic particles is needed. Such a description is provided by

quantum mechanics.

Some more remarks

Typically, a theoretical description of a physical system is a mathematical representa-

tion of (at least) two basic notions: observables and states. An observable is something

you can measure about a system; the state tells you what you will find when you make a

measurement of an observable. In this regard quantum mechanics is very much like any

other physical theory. Of course, the devil is in the details. We shall spend the bulk of

this class seeing precisely how quantum mechanics represents states and observables.

In quantum mechanics, knowing the state of a system is equivalent to knowing the

probability distribution for measurements of all observables. Sometimes this notion of

state gives relatively simple information: “the energy of a hydrogen atom in its ground

state is -13.6 eV”. Sometimes this notion of state is a little more subtle: “If the particle is

in a state of definite momentum it has equal probability to be almost anywhere”.

The introduction of probability distributions as the essence of a state is unsettling to

a classical mechanic who is used to asking: “If the initial position and momentum are

given, where will the particle be in 10 seconds?” To be sure, all such classical mechanics

questions can be rephrased in terms of probability distributions. For example, the previous

question could be rephrased as: “If the system has the given coordinates and momentum
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with probability one at the initial time, what is the probability distribution for position

after 10 seconds have passed?” In classical mechanics the probability distributions are

quite simple, e.g., the probability for the particle to be at its classical location at any

given time (as specified by Newton’s second law) is one, and zero otherwise. This is why it

is cumbersome to use probabilities to do classical mechanics, and we usually don’t do that.

In quantum mechanics it is impossible to have a state in which position and momentum

are known with probability unity. Moreover, quantum mechanics will not, in general, lead

to simple probability distributions (1 or 0) for observables upon time evolution. So far as

anyone knows, nature is described by quantum mechanics, and quantum mechanics relies

on a probabilistic notion of “state”.

If you have encountered any statistical mechanics, then viewing the state of a system

using probability distributions is much more familiar and reasonable. Is quantum me-

chanics just some kind of statistical mechanics? It seems the answer is “no”. The reason

for this is that, as briefly touched on earlier, probabilities in quantum mechanics are ob-

tained using probability “amplitudes” (wave functions); this intermediate step allows for

interference phenomena that cannot be obtained using probabilities such as in statistical

mechanics. The way in which quantum mechanics deals with probabilities to describe na-

ture is profoundly different—and much more interesting–than that appearing in statistical

mechanics.

Has all of this introductory discussion left you feeling a little lost? That’s OK; if it all

were clear to you then you wouldn’t need this course!

We shall now turn to a more formal development of quantum mechanics, in which we

will terminate the vague, qualitative discussions of the theory and try to figure out how

to “do” it. For quite a while we will (for simplicity) assume that the universe is one-

dimensional–just the x-axis. Later we will amend this oversimplification. In addition, we

will spend a good deal of time considering a very simple system: a single particle moving

in one dimension in some given force field. Of course, we need to explain what terms like

“particle” and “force” mean . . . Such concepts will emerge, gradually, as we proceed.
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