Sample Homework Problems

Problem: From Euler's formula, $e^{i \theta}=\cos (\theta)+I \sin (\theta)$, prove that $\cos ^{2} \theta+\sin ^{2} \theta=1$.
Bad Answer

$$
1=\left|e^{i \theta}\right|^{2}=|\cos (\theta)+i \sin (\theta)|^{2}=\cos ^{2}(\theta)+\sin ^{2}(\theta)
$$

Good Answer
This result follows from taking the absolute value square of both sides of Euler's formula. On the right hand side we get

$$
|\cos (\theta)+i \sin (\theta)|^{2}=[\cos (\theta)+i \sin (\theta)][\cos (\theta)-i \sin (\theta)]=\cos ^{2}(\theta)+\sin ^{2}(\theta)
$$

The absolute value square of the left hand side of Euler's formula is

$$
\left|e^{i \theta}\right|^{2}=e^{i \theta} e^{-i \theta}=1
$$

Therefore we get

$$
1=\cos ^{2}(\theta)+\sin ^{2}(\theta)
$$

Problem: The energy of a harmonic oscillator can be defined by

$$
E=\frac{\gamma}{2}\left\{\left(\frac{d q}{d t}\right)^{2}+\omega^{2} q^{2}\right\}
$$

where γ is a constant (needed to get the units right). Show that E does not depend upon time if $q=q(t)$ solves the harmonic oscillator equation.

Bad Answer:

$$
\frac{d E}{d t}=\gamma\left\{\frac{d q}{d t} \frac{d^{2} q}{d t^{2}}+\omega^{2} q \frac{d q}{d t}\right\}=0
$$

Good Answer: For any function $q=q(t)$ the time rate of change of the energy is given by

$$
\begin{aligned}
\frac{d E}{d t} & =\gamma\left\{\frac{d q}{d t} \frac{d^{2} q}{d t^{2}}+\omega^{2} q \frac{d q}{d t}\right\} \\
& =\gamma \frac{d q}{d t}\left\{\frac{d^{2} q}{d t^{2}}+\omega^{2} q\right\}
\end{aligned}
$$

The quantity in brackets vanishes precisely when the harmonic oscillator equation holds since

$$
\frac{d^{2} q}{d t^{2}}=-\omega^{2} q \quad \Longleftrightarrow \quad \frac{d^{2} q}{d t^{2}}+\omega^{2} q=0
$$

So if $q(t)$ solves the harmonic oscillator equation, then $\frac{d E}{d t}=0$.

