Problem 3.9

Consider three different approximations to the derivative $f^{\prime}(x)$ of a function $f(x)$ in terms of a small parameter $h \ll 1$:
(1) Forward difference: $\Delta_{1} f=\frac{f(x+h)-f(x)}{h}$
(2) Backward difference: $\Delta_{2} f=\frac{f(x)-f(x-h)}{h}$
(3) Central difference: $\Delta_{3} f=\frac{f\left(x+\frac{1}{2} h\right)-f\left(x-\frac{1}{2} h\right)}{h}$

Use Taylor's theorem to show that the error in the derivative introduced by not taking the limit as $h \rightarrow 0$ is of order h for $\Delta_{1} f$ and $\Delta_{2} f$, but is of order h^{2} for $\Delta_{3} f$, and hence $\Delta_{3} f$ is the more accurate approximation of the derivative.

