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Introduction to Quantum Statistical Thermodynamics

Relevant sections in text: §7.1–7.4

Quantum Statistics: Bosons and Fermions

We now consider the important physical situation in which a physical system is at a

sufficiently low temperature and/or is sufficiently dense that the classical probability of

two particles (or microsystems) occupying the same state is non-negligible. In this case

it is mandatory to take account of the quantum nature of the particles/microsystems. In

this regard there are two types of particles in the universe: bosons and fermions. Our

goal in all that follows is to understand the statistical thermodynamical properties of

quantum particles, that is to say, bosons and fermions. I should point out where these

names come from: they are coming from the scientists who pioneered the characterization

of their statistical properties. Bosons obey “Bose-Einstein statistics”. Fermions obey

“Fermi-Dirac statistics”.

As a general rule, matter is made of fermions, e.g., protons, neutrons and electrons

are fermions. Bosons are particles (quanta) associated with interactions, e.g., photons and

the Higgs particle are bosons. The key difference between bosons and fermions concerns

the behavior of identical particles — particles of the same type. The idea of identical

particles, e.g., electrons, is that all electrons are intrinsically the same — they all have

certain immutable properties: they have the same mass, charge, spin. To be sure, the

electrons can be in different states (electrons on Earth versus electrons in the sun, spin up

versus spin down along some direction, high energy electrons versus low energy electrons,

and so forth), but the particles are all interchangeable as far as their intrinsic properies

(mass, charge, spin). If you’ve seen one electron, you’ve seen them all. All this talk applies

to any species of particle, e.g., all photons are intrinsically the same, although they can be

in different states.*

Fermions have the property that no two particles of the same type (e.g., electrons)

can be in the same state. You will never see two fermions all of whose measurable char-

acteristics are the same. Bosons, on the other hand, are particles which have no such

restriction — arbitrarily many bosons can be in the same state.† As we shall see, this

difference between bosons and fermions leads to them having very different statistical and

macroscopic behavior.

* This distinction between “intrinsic” properties and accidental properties associated to
“states” is non-trivial and is part of a proper understanding of the physics of the particle.
† This is why, for example on can get macroscopic classical electromagnetic fields from many,

many photons.
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A famous theorem coming from relativistic quantum field theory, the spin-statistics

theorem, asserts that bosons have integral spin and fermions have half-integral spin. Com-

posite systems, e.g., atoms, also can exhibit bosonic or fermionic behavior. Which will it

be? As it happens, if one combines an even (odd) number of half-integral spins the result

is (half) integral spin. Consequently, for experiments/processes that probe the details of

nuclear structure, a Helium-4 nucleus is a boson, but a Helium-3 nucleus is a fermion. For

processes that don’t probe atomic structure, a hydrogen atom is a boson, while deuterium

is a fermion. Strictly speaking, composite systems act like bosons/fermions according to

their net spin, provided one is not examining their behavior via interactions which probe

the subsystems which make up the composite system. So, if you look too closely at a

Helium-4 nucleus you will find it isn’t really a boson, but is a collection of fermions.

When do we need to worry about quantum statistics and when will the usual classical

reasoning work? The answer isn’t cut and dried, but is a matter of comparing orders

of magnitude and may depend upon the details of the system. Generally speaking, if

densities are not too high, nor temperatures too low, then the classical probability of two

particles being in the same state will usually be negligible. In this case, whether they are

bosons or fermions is immaterial and their quantum behavior is likewise negligible. We just

have to take care when counting states to take account of the indistinguishability of the

particles. When the densities get high enough, and/or the temperatures get low enough

and the classical probability of two identical particles being in the same state becomes

non-negligible, we must take account of their quantum statistics.

A good illustration of this reasoning is provided by an ideal gas, so let’s consider this

system. To address the question for an ideal gas, I first remind you that any particle of

with momentum ~p has a certain length associated with it — the de Broglie wavelength λ

— given by

λ =
h

p
,

where h is Planck’s constant. As you probably know, quantum mechanical particles really

don’t have a precise momentum (or position for that matter) — it fluctuates statistically.

But if the statistical distribution for momentum is sharply peaked around p, the wavelike

behavior (in the probability distribution) for position has characteristic wavelength λ.

Insofar as λ is non-negligible on the length scale of a given situation quantum effects will

be important. Now, the typical momentum of a molecule in an ideal gas is determined by

its kinetic energy, which is on the order of kT . So we can estimate

p ∼
√

2mkT =⇒ λ ∼ h√
2mkT

.

It is conventional to define a quantum length:

lQ =
h√

2πmkT
,
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where the factor of π is inserted for later convenience. There is a corresponding quantum

area and volume:

aQ ≡ l2Q =
h2

2πmkT
, vQ ≡ l3Q =

h3

(2πmkT )3/2
.

For an ideal gas, if the volume per particle is comparable to this quantum volume, then

quantum behavior — quantum statistics — will come into play. When the volume per

particle is much larger than the quantum volume, then we can use the classical description.

So, we have
V

N
>> vQ classical statistics

V

N
≤ vQ quantum statistics

Note that the quantum length scale is determined by a combination of mass and tem-

perature, while the criterion for quantum/classical statistics depends upon the (number)

density. Thus one can get quantum statistical behavior by (i) lowering the temperature

(thus raising vQ, as in liquid helium, (ii) raising the density, as in a white dwarf or neu-

tron star, and/or (iii) reducing the mass – using light enough particles, as in the case for

electrons in a (semi-) conductor.

A simple example: a gas with 2 particles

To get a feel for the statistics of bosons and fermions, let us consider a really simple

situation: let the system be a gas consisting of 2 non-interacting identical particles, each of

which can be in 3 distinct “single particle” states. For example, the system could consist

of two identical atoms and the “single particle states” are their (first 3) energy levels. We

want to enumerate the possible states of the gas in the 2 quantum statistical cases. Label

the two particles as A and B and label the states as 1, 2, 3.

Bose-Einstein statistics

There are 3 distinct ways of placing the particles in the same state. There are 3 distinct

ways of putting the particles in different states. It’s only 3 in this case because the particles

are identical. For example, putting particle A in state 1, and B in state 2, say, is the same

as putting particle A in state 2, and B in state 1.* Therefore, the total number of states is

6 and the relative probability for finding two particles in the same state is 1/2. Compare

with the case of two distinguishable particles where the total number of states is 9 and the

relative probability for finding two particles in the same state is 1/3.

* This statement is the principal meaning of “identical particles”.
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Fermi-Dirac statistics

The counting is the same as in the boson case, except that the 3 states of the system

where the particles are in the same single particle state are excluded. Thus there are 3

states in total. The relative probability for finding two particles in the same state is zero,

of course.

You see how the statistics controls the number of states. More interestingly, you

can see that the relative probability for finding particles in the same state is greatest for

identical bosons and least for identical fermions, with distinguishable particles somewhere

in between. Thus one can say that by their very nature, identical bosons “like” to be in

the same state compared to identical fermions and other particles.

Degenerate Fermi Gas

It is easy to check that for an electron at room temperature the quantum length is

about 4 nm so the quantum volume is about 64 nm3. Consider a metal where, with about

one conduction electron per atom, the volume per conduction electron is approximately

10−2 nm3. Thanks to the relatively low mass of the electron and the relatively low (room)

temperature, the conduction electrons in a metal must be treated quantum mechanically —

the fermionic nature of the particle can be expected to be important. We will now explore

the simplest possible model of a quantum electrons – the degenerate Fermi gas. This

provides an elementary model of conduction electrons in a metal as well as an explanation

for phenomena like white dwarf stars.

The degenerate Fermi gas is obtained by treating a collection of electrons as non-

interacting fermions at zero temperature. As T → 0 you expect the system to settle into

its unique lowest energy state. If it weren’t for the fact that the electrons were fermions,

this lowest energy state would arise by putting all the particles in the lowest single-particle

state. But we can only put 1 electron per single particle state, so we keep having to fill

more and more states. Eventually we have placed all the particles, say N of them, in the

lowest available energy states. The particles will have occupied all (1-particle) energies up

to some value, call it εF — the Fermi energy. This leads to behavior with thermodynamic

features — even at zero temperature!

As a simple illustration of the Fermi energy, let us return to our identical particles A

and B. Let us suppose that states 1, 2, 3, have energies 1eV, 2eV, 3eV, respectively. The

Fermi energy is 2eV. Can you see why?

What we’d like to do now with the degenerate Fermi gas is to compute the Fermi

energy as well as a few other observables like the internal energy and pressure of the gas,

all as functions of the volume and number of particles. To do this we need to get a handle
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on the 1-particle states. We will model the electrons as a “particle in a box”. This means

the following.

For a free particle in a cubic box with sides of length L, the states of a particle with a

given energy ε have wave functions of the form

Ψ(x, y, z) = (const.) sin(
nxxπ

L
) sin(

nyyπ

L
) sin(

nzzπ

L
),

where the n’s can be any integer greater than equal to 1. Note that the wave function

vanishes on the edges of the box which are taken to be at x, y, z = 0, L. The state is

determined by the choice of the n’s and the spin state of the electron, the latter can be up

or down along some (arbitrarily chosen) axis. The ground state is when nx = ny = nz = 1,

irrespective of the spin state (so the ground state is doubly degenerate). The first excited

states are obtained by setting 2 of the 3 n’s to unity and the third n is set equal to 2, e.g.,

nx = ny = 1, nz = 2. Thus the ground state is doubly degenerate and the first excited

state is 6-fold degenerate. The energy ε of a single partucke state determined by a given

choice of the n’s is

ε =
h2

8mL2
(n2
x + n2

y + n2
z),

where m is the electron mass.

So much for the energy states of a single particle. The idea is now that, for the T ≈ 0

ground state of the gas, each electron occupies one of the energy states such that the

gas has the lowest possible energy. Actually, one can put two electrons in each energy

state because there are two spin states the electron can be in for any given energy. The

maximum 1-particle energy which occurs is the Fermi energy, which we write as

εF =
h2

8mL2
n2
max,

where n2
max is the largest value for n2

x + n2
y + n2

z which occurs. To get a handle on εF we

use a geometric interpretation of this formula which arises for a macroscopic gas. Think

of ~n = (nx, ny, nz) as a position vector in 3 dimensional space. The filled 1-particle states

determine a sphere of radius nmax. Actually, only 1/8 of a sphere is used since the vectors

~n have all components being non-negative. For a large enough number of particles, it is

not to hard to see that the volume of this 1/8 of a sphere is approximately 1/2 the number

of states which are filled, which is 1/2 the number of particles N . (The 1/2 comes because

there are two particles per energy state due to the two spin states of an electron.) Thus,

for N >> 1, we have

N = 2× 1

8
× 4π

3
n3
max =

π

3
n3
max.

Use this formula to eliminate nmax in εF and set V = L3. We then get a nice formula for

the Fermi energy:

εF =
h2

8m

(
3N

πV

)2/3

.
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What makes this formula “nice” is that it is built from the macroscopic observables N and

V (along with a single microscopic but fixed constant m). Note that the Fermi energy is

an intensive quantity.

You can check that for a typical metal the Fermi energy is on the order of an electron-

volt or so. At room temperature, the average thermal energy per electron is about kT =

1/40 eV . We see that the internal energy per electron is at least an order of magnitude

bigger than the average thermal energy of an electron. What this means is that at room

temperature the fermionic effects are dominating the thermal effects, although the latter

effects aren’t completely negligible. This justifies setting T = 0 as a first approximation.

More generally, we can define a Fermi temperature:

TF =
εF
k

=
h2

8mk

(
3N

πV

)2/3

.

The Fermi temperature is the temperature at which thermal effects are comparable to

quantum effects associated with Fermi statistics. The Fermi temperature for a metal is a

couple of orders of magnitude above room temperature.

We can now compute the total energy U of the gas by summing up all the single particle

energies from the lowest up to εF . Once again we can get a good approximation to the

total energy by taking advantage of the macroscopic nature of the gas – which then has a

very large number of electrons – and replacing the sum by an integral over the Cartesian

coordinates (nx, ny, nz). This approximation will be valid provided we have a large enough

number of fermions. We express this integral in spherical polar coordinates, integrating on

the interior of the 1/8 sphere of radius mmax. The angular integrals are trivial and only

the radial integral survives.

U = 2

∫
d3n

h2

8mL2
(n2
x + n2

y + n2
z) =

πh2

8mL2

∫ nmax

0
n4dn =

3

5
NεF =

3h2N

40m

(
3N

πV

)2/3

.

The factor of 2 in front of the integral is because there are 2 electrons/spin states for

each energy level. Thus the energy of the gas is non-trivial even when thermal effects are

ignored.

The degenerate Fermi gas has other thermodynamic-like properties besides internal

energy. For example, we can easily compute the pressure of this gas. Recall from the

thermodynamic identity that

P = −
(
∂U

∂V

)
S,N

.

We have

U =
3

5
NεF =

3h2N

40m

(
3N

πV

)2/3
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so that

P =
2NεF

5V
=

2U

3V
,

or

U =
3

2
PV.

Thus the relation between pressure, volume and energy is like that of a monatomic ideal

gas! The analogy is not perfect; there is no formula like U = 3
2NkT — indeed, we are

approximating T = 0. Moreover, the pressure here is not due to thermal kinetic energy,

but due to the fermionic statistics only — the Pauli exclusion principle. This pressure is

often called degeneracy pressure. There is no force per se which is causing the degeneracy

pressure. Fermionic behavior alone means it can cost work to compress the gas. For a

typical metal, this “degeneracy pressure” is on the order of 106N/m2! But keep in mind

there are some forces at play here. The electrostatic attraction of protons and electrons

essentially cancels out this degeneracy pressure. But you can now begin to see how solids

are, well, . . . solid.

Degeneracy pressure, white dwarves and neutron stars

The degeneracy pressure of fermions is what allows dense astrophysical objects like

white dwarves and neutron stars to exist. We are now in a good position to see how this

works. The basic issue is that the gravitational force tries to compress the star, while the

internal energy of the fermions (electrons or neutrons) due to the Pauli exclusion principle

tends to decompress the star. When these two effects balance, we get an equilibrium state.

We can estimate the properties of this state using simple energy arguments and see if it

matches observation.

First, the gravitational potential energy of a uniform ball of matter with mass M and

radius R is given by (see any introductory physics text)

U = −3GM2

5R
.

Next, the internal energy of a degenerate Fermi gas consisting of N fermions of mass m

in a volume V is just the energy we computed above, now relabeled to avoid notational

confusion:

K =
3

5
NεF =

3

40
N
h2

m

(
3N

πV

)2/3

.

Using V = 4
3πR

3, we have

K =
3

40
N

h2

mR2

(
9N

4π2

)2/3

.
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The question we want to answer is whether there is a value for R where (stable) equilibrium

is obtained. This will happen at a minimum of the energy E = U + K. As a function of

R, the energy has the form

E = −α
R

+
β

R2
, α, β > 0.

If you graph the energy as a function of R you will see that it should indeed have a

minimum, which can be found by setting its first derivative to zero. Taking a derivative

and setting it equal zero we find

R =
2β

α
=

3h2

16GmM2

(
12N5

π4

)1/3

.

Now, the number of fermions can be expected to be proportional to the mass of the

star:

N =
1

γ
M,

where the choice of γ will depend upon what the star is made of. Thus the equilibrium

radius is

R =
3h2

16Gm

(
12

γ5π4M

)1/3

.

Note that the equilibrium radius varies with mass like M−1/3. In particular, a larger mass

means a smaller radius!

For a white dwarf the fermions of interest are electrons and there is about one neutron

and proton for each electron. Since the neutrons and protons provide the mass, we have

γwd = 2mp,

where mp is the proton mass. Using this value for γ, for a 1 solar mass white dwarf we

then get Rwd ≈ 7200 km. For a neutron star the fermions are the neutrons, which also

provide the mass. So we have

γns = mn

where mn is the neutron mass. For a 1 solar mass neutron star we then get Rns ≈ 12 km.

Both of these estimates are pretty close to what is observed!

It is worth noting that we have ignored the temperature of the white dwarf in these

considerations (neutron star temperatures are clearly low enough to be irrelevant). It is

easily seen that the Fermi energy of a white dwarf is on the order of 105eV . How hot is

a white dwarf? The surface temperature varies over time, but it is no higher than about

105K, so that the average thermal energy is on the order of, say, 10-100 eV. So it is not
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a bad approximation to ignore the temperature effect on the star’s stability. Indeed, if it

were not for the degeneracy pressure the white dwarf (and neutron star) could not exist!

Although it is beyond the scope of our simple discussion here, it is worth mentioning

that in Einstein’s (more accurate) theory of gravity there are some new effects which

feature. In particular, energy of any kind (not just mass energy) creates a gravitational

field and is influenced by gravitational fields. This means the attractive effect can become

much stronger than was estimated above using Newtonian gravity. As it happens, if there

is enough mass concentrated in a small enough volume, the effective energy function is

such that no stable equilibrium can result - the body must collapse gravitationally despite

the degeneracy pressure. There is no known effect which can intervene. This is how black

holes are formed.

Boson gas: Photons and Blackbody Radiation

Now we turn out attention to systems composed of bosons. Unlike fermions, there is no

limit to the number of bosons in a single particle state, consequently the zero temperature

limit is not very exciting. We thus consider a gas of non-interacting bosons at temperature

T . We will specialize our treatment to photons, which are the most familiar and important

of the bosons. Like all particles, a photon is a particle-like excitation of a quantum field

— the photon field — which is considered in quantum electrodynamics. Here we will use

a more phenomenological description.

We want to consider a box of non-interacting photons at a given temperature (just as

we considered a box of fermions at temperature zero previously). This models any situation

where you have an approximate vacuum (or negligible matter) filled with electromagnetic

radiation at temperature T . So, for example, this could be the inside of your oven, or

it could be some region of interstellar space. The precise idea of a photon is probably a

little different from what you think it is. The slogan to keep in mind is that photons are

“quantum normal modes of the electromagnetic field”. The idea is that the electromagnetic

field can be viewed as a superposition of normal modes – the Fourier modes.† One views

these normal modes – when treated quantum mechanically – as possible states of a single

photon, and there is no limit to how many photons can be in a given state. Classically,

each normal mode has a frequency f and wavelength λ = c/f . The quantum description of

the normal modes is fairly simple: each normal mode is a quantum oscillator with natural

frequency f . The possible energies of a given mode, relative to the ground state energy,

are the usual oscillator energies: 0, hf, 2hf, 3hf, . . .. For a given normal mode, we

interpret the state with energy 0 as having no photons (at that frequency); we interpret

the state with energy hf as a single photon with frequency f , wavelength c/f , energy hf ,

† For photons in a box, the normal modes form a discrete family of standing waves.
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and momentum hλ; we interpret the state with energy 2hf as two photons of frequency f ,

and so forth.* More precisely, we re-interpret the energy quantum number of the oscillator

as the photon occupation number for that mode.

Since photons will be interpreted in terms of quantum oscillators, we need to review

for a moment the statistical thermodynamics of a quantum oscillator. At temperature T

the partition function for an oscillator with frequency f is given by

Zf = 1 + e−βhf + e−2βhf + . . . =
1

1− e−βhf
.

As usual, at temperature T the oscillator can be in a variety of states, with various prob-

abilities given by the Boltzmann formula. The average energy of the oscillator is

Ef = −∂ lnZ

∂β
=

hf

ehf/kT − 1
.

Let us now re-interpret this result in terms of photons, since we are interested in a gas

of photons at temperature T . Above, I described the scheme whereby (for a given normal

mode of frequency f) each photon has energy hf . Thus, if at temperature T the average

energy of an oscillator with frequency f is Ef , then this can be interpreted as saying the

average number of photons (in this normal mode) is

nf =
Ef
hf

=
1

ehf/kT − 1
.

This is a very famous formula — it is the Planck distribution. Note in particular that

photons with energies hf >> kT are exponentially suppressed. For all practical pur-

poses, photons at such frequencies don’t appear. Normal modes with lower frequencies are

favored, as you can see. (Why doesn’t f = 0 cause a problem?)

Let us now compute the internal energy of the gas of photons at temperature T and

volume V , which we interpret as the average energy of the box of non-interacting photons.

We do this by (1) computing the energy for each mode, (2) multiplying the energy of each

mode by the average number of photons in that mode, (3) summing the result over all

modes.

To compute the energy for a given normal mode, we view our volume as a cube of

edge L = V 1/3, with the Cartesian axes along its edges, the normal modes of vibration are

characterized by three independently specifiable integers

nx = 1, 2, . . . , ny = 1, 2, . . . , nz = 1, 2, . . .

* Note that these photon states represent quantum particles with definite momentum. Thus
their position is completely uncertain, a priori. They are not little balls of light which are
flying around in space. Indeed, a photon has just as much – if not more – in common with
a something like a vibrating guitar string as it does with a particle.
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The wavelength (in each direction) of this mode is

λx =
2L

nx
, λy =

2L

ny
, λz =

2L

nz
.

Using relation between momentum and wavelength (p = h/λ) for a photon, we have for a

single photon in this mode:

px =
hnx
2L

, py =
hny
2L

, pz =
hnz
2L

.

The energy of a photon in terms of momentum is the familiar result ε = pc. So, the energy

of a single photon in the normal mode specified by (nx, ny, nz) takes the form

ε = hf = pc =
hcn

2L

where

n =
√
n2
x + n2

y + n2
z.

The average number of photons in a mode with frequency f is given by the Planck dis-

tribution. We can multiply by the energy hf of this mode and sum over all modes to get

the average energy of the photon gas. In the thermodynamic/macroscopic limit (many

photons) we can, as usual, identify this with the energy U of the photon gas.* We thus

have

U = 2
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

hfnf =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

hcn

L

1

ehcn/2LkT − 1
.

I inserted a factor of two here because there are two polarization states for every standing

wave mode. (In this calculation, at least, this is the only place where the vector nature

of the electromagnetic field comes into play.) The bulk of the sum comes from the high n

values, where we can approximate the sum by an integral in the first quadrant of ~n space

(as with the fermi gas). So, for a macroscopic gas, we have

U =

∫ ∞
0

dn

∫ π/2

0
dθ

∫ π/2

0
dφ (n2 sin θ)

hcn

L

1

ehcn/2LkT − 1

= L3
∫ ∞

0
dε

8π

(hc)3

ε3

eε/kT − 1

The energy density is
U

V
=

U

L3
=

∫ ∞
0

dε
8π

(hc)3

ε3

eε/kT − 1
.

* Notice that we do not specify the number of photons. The number of photons is determined
by the choice of temperature, since this tells how many photons per mode.
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Denote by u(ε) the energy density per photon energy ε; it is just the integrand in the

integral over ε:

u(ε) =
8π

(hc)3

ε3

eε/kT − 1
.

This is the celebrated Planck spectrum of photons. It tells you how much of the energy

density comes from photons of various energies.

From the Planck spectrum, at a given temperature T , the energy which yields the

maximum energy density is

εmax = 2.82kT.

This, along with the usual relation ε = hf , gives the relation between how hot something

is and what color it appears to be. It is easy enough to see that the energy density of the

gas varies as T 4. To see this, just make a change of variables, x = ε/kT , three powers of

temperature come from the ε3 in the integrand and one more power of temperature comes

from the integration meausure dε.

The integral for the energy density can be computed numerically, of course. Remark-

ably enough, it can also be computed in closed form. It is not that easy, though. I will

just tell you the answer – any decent computer algebra system can handle it:

U

V
=

8π5(kT )4

15(hc)3
.

Again, the energy (density) of a photon gas varies as the fourth power of the temperature.

Since we expect the typical photon to have (thermally induced) energy of about kT , this

means the number of photons is on the order of (const.)T 3. It is not hard to check that

the number of photons is on the order of 107 V T 3, in SI units.

From this formula we can compute the heat capacity of the box of photons (at constant

volume)

CV =

(
∂U

∂T

)
V

=
32π5k4

15(hc)3
V T 3.

Notice that CV is not constant; it vanishes as T → 0 as it should – the box of photons

obeys the third law.

From this formula for heat capacity we can compute the entropy of the box of photons:

S(T ) =

∫ T

0

CV (T ′)
T ′

=
32π5k4

45(hc)3
V T 3.

Notice that since the number of photons is proportional to T 3, the entropy is proportional

to the number of photons as you might expect.
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Finally, I direct you toward the text to read about some important examples of the

energy-temperature relationships of a gas of photons. Of great historical importance is the

idea of a ”blackbody”, which is an idealized emitter/absorber. It can be shown that, using

our previous results, such objects radiate with a power proportional to T 4. Similarly, a

point source (e.g., a small hole in the box of photons) radiates with a power proportional

to T 4. An example of cosmological significance is the cosmic background radiation. Dis-

covered in the 1960’s, and predicted by cosmological models, this radiation is that of a

photon gas at a temperature of 2.73K.
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