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Carnot Cycle. Heat Engines. Refrigerators.

Relevant sections in text: §4.1, 4.2

Heat Engines

A heat engine is any device which, through a cyclic process, absorbs energy via heat

from some external source and converts (some of) this energy to work. Many real world

“engines” (e.g., automobile engines, steam engines) can be modeled as heat engines. There

are some fundamental thermodynamic features and limitations of heat engines which arise

irrespective of the details of how the engines work. Here I will briefly examine some of

these since they are useful, instructive, and even interesting.

The principal piece of information which thermodynamics gives us about this simple

— but rather general — model of an engine is a limitation on the possible efficiency of the

engine. The efficiency of a heat engine is defined as the ratio of work performed W to the

energy absorbed as heat Qh:

e =
W
Qh

.

Let me comment on notation and conventions. First of all, note that I use a slightly

different symbol for work here. Following standard conventions (including the text’s) for

discussions of engines (and refrigerators), we deal with the work done by the engine on

its environment. So, in the context of heat engines if W > 0 then energy is leaving the

thermodynamic system in the form of work. Secondly, the subscript “h” on Qh does not

signify “heat”, but “hot”. The idea here is that in order for energy to flow from the

environment into the system the source of that energy must be at a higher temperature

than the engine.

Evidently, from our definition, if we manage to convert all the energy absorbed as

heat into work then the efficiency of the engine is unity. This is reasonable in light of

conservation of energy; an efficiency of one is the best we could possibly do in light of

the first law. To see this more clearly, recall that a heat engine is by definition a cyclic

process. “Cyclic” means that the engine periodically returns to the same state. The

change in internal energy of the system (and any other observable, for that matter) after

each cycle is zero. The first law then tells us that after a cycle the net heat absorbed by

the system is the energy transferred out of the system by work. So, just taking account of

the first law, we could imagine a cyclic process where heat goes in and an equal amount of

work goes out — this is the case e = 1. Clearly e > 1 is not possible. All of this we learn

from the first law. We can summarize the effect of the first law as: “You can’t win”.
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The second law of thermodynamics implies that an efficiency of unity is in fact not

possible; we must have e < 1. One of our primary goals is to see how this comes about.

The main reason is that the heat transfer of energy into the engine involves an increase in

entropy of the engine. Recall our result that dS ≥ δQ/T . Assuming the heat is absorbed

at constant temperature, we have in fact

∆S ≥ Qh
T
.

This entropy must be removed by the time the engine completes one cycle of operation

since all observables must return to their original values if the system is back in its original

state. So whatever entropy increase accompanied the absorption of energy by heat must

be undone by the end of the cycle. This removal of entropy requires expelling some heat

from the engine. In light of this heat transfer out of the system, conservation of energy

tells us that the work done is, at best, the difference of the heat absorbed and the heat

expelled.

To make all this precise, we let Qh be the heat absorbed by the engine from some

hotter reservoir at temperature Th and we let Qc be the heat expelled by the engine to

some colder reservoir at temperature Tc.* We model these heat transfers of energy as

occurring at constant temperatures Th and Tc. Note that (as we did with the work) we

have changed the convention for the sign of heat at the colder temperature. If Qc > 0

then energy has been transferred from the engine to the colder reservoir. At the end of

any cyclic process the internal energy has not changed. Conservation of energy – the first

law – then tells us

Qh −Qc −W = 0.

It is now easy to see that

e =
W
Qh

= 1− Qc
Qh

.

This result follows from the definition of efficiency and the first law only. Next we bring

in the second law.

The second law asserts that after the cyclic process the change in entropy of the

“universe” – here modeled as the engine and its hot and cold reservoirs of energy – must

not decrease. At the end of one engine cycle, the entropy of the engine has not changed.

Hence the change in entropy of the environment must be greater than or equal to zero by

the second law. But we know (from our discussion of the thermodynamic identity) that

the change in entropy of the environment is

∆Senv =
Qc
Tc
− Qh
Th

.

* Why hot and cold reservoirs? If energy is to flow into the engine as heat, the source of the
energy must be hotter. Similarly, if energy is to flow from the engine as heat, it must flow
to a colder place.
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And the second law then tells us
Qc
Tc
− Qh
Th
≥ 0.

This means: (1) Qc cannot be zero — some heat must be expelled from the engine; (2)

Qc
Qh
≥ Tc
Th
,

so that

e ≤ 1− Tc
Th
.

Consequently e < 1. This is pretty neat: just assuming a cyclic process and the first and

second laws we get a very simple, explicit upper limit on the efficiency of an engine!

The first law says you can not get efficiency greater than unity. The second law forbids

an efficiency of unity – not all energy absorbed as heat can be converted into work. Better

efficiency comes by making the ratio Tc
Th

as small as possible. We can summarize the effect

of the second law as: “You can’t break even.”

We have found a limit on the efficiency of an engine. How good is this limit? In other

words, is the upper bound on efficiency attainable? From our derivation of the upper

bound it is clear that to attain it one must create no net entropy in the environment after

each cycle. In particular, the entropy gained/lost by the engine via Qh/Qc must be exactly

the entropy lost/gained by the reservoirs Th/Tc. This can be done via the Carnot cycle.

This quasi-static cycle involving compressional work has 4 steps: (a) isothermal expansion

from V1 to V2 at Th; (b) adiabatic expansion from (V2, Th) to (V3, Tc); (c) isothermal

compression from V3 to V2 at Tc; (d) adiabatic compression from (V2, Tc) to (V1, Th). You

can compute the efficiency of this quasi-static process for an ideal gas and check that it is

the maximum possible efficiency (your homework problem 4.5). This is guaranteed by the

fact that the net change in entropy of the engine plus environment is zero. To see this,

you have to observe that steps (b) and (d) involve no heat transfer and hence no exchange

of entropy. Steps (a)/(c) have the entropy gained/lost by the engine exactly the same as

the entropy lost/gained by the environment. At the end of the cycle, the entropy change

of the engine is zero and then so is that of the environment.

Now for the fine print. Strictly speaking, what the argument above shows is that you

can get arbitrarily close to the maximum efficiency via the Carnot cycle. The reason is

that you will not really be able to get heat transfer to occur in steps (a) or (c) unless the

temperature of the engine in these steps is less or greater than that of the hot or cold

reservoir, respectively. But, as we have seen, when energy is transferred by heat from a

hotter to a colder system the net entropy of the combined system increases. Thus, insofar

as the engine is cooler than Th during step (a) and hotter than Tc during step (c), the

entropy of the universe (the engine and the resevoirs) will increase and the efficiency will
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be less than its theoretical maximum. The idea of the Carnot cycle is that as you let the

engine temperatures approach those of the hot and cold reservoirs the efficiency approaches

its maximum. Of course, this means that the engine will work very slowly (during steps

(a) and (c)) when it is near its maximum efficiency.

As an example of all this stuff, let’s have a look at the cyclic process featuring in Figure

1.10b on page 23 of your text (Problem 1.34). It is not hard to compute that the cycle has

a net absorption of heat

Q = (P2 − P1)(V2 − V1),

with work done by the system of

W = (P2 − P1)(V2 − V1).

This does not mean the efficiency is unity since Q = Qh −Qc and the efficiency is W/Qh.

Let us suppose the gas is diatomic and that

V2 = 3V1, P2 = 2P1.

We will seek to answer two questions: (i) What is the efficiency of this process? (ii) How

does the efficiency compare with the theoretical limit derived above? (These questions

consitute problem 4.1.)

To determine the efficiency of this cycle we can compute the ratio of W and Qh.

Keeping in mind our convention for work, and noting that this quantity is just the area of

the rectangle, we have

W = (P2 − P1)(V2 − V1) = 2P1V1.

During each of the four processes there is heat transfer. During processes A and B the

heat transfer is into the engine – energy is absorbed. Using U = 5
2NkT , the work done,

and the first law, the heat absorbed is found to be

Qh =
5

2
V1(P2 − P1) +

7

2
P2(V2 − V1) =

33

2
P1V1.

We then get

e =
W
Qh

=
4

33
= 0.12.

To estimate the upper limit of the efficiency we compare with an “ideal” cycle in which

all the heat absorption takes place at the hottest temperature of the cycle and the heat

expulsion takes place at the lowest temperature of the cycle. These temperatures can be

found from PV = NkT . Evidently,

Th =
P2V2

Nk
, Tc =

P1V1

Nk
.
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We then have

e ≤ 1− P1V1

P2V2
=

5

6
= 0.83.

Evidently, the cycle shown in figure 1.10b is not very efficient relative to the Carnot type

of cycle.

Refrigerators

An ideal heat engine absorbs heat Qh from a hot reservoir, turns some of this energy

into workW, and expels the rest of the energy as heat Qc to a cold reservoir. A refrigerator

is essentially this process in reverse and models, well, your refrigerator as well as your air

conditioner. The reverse process consists of (i) heat transfer of energy Qc from a cold

reservoir (inside of fridge, your house), (ii) heat Qh expelled to a hot reservoir (outside); all

this is possible because (iii) work W is done on the refrigerator. Note the sign conventions

on the heats and work. Heat transferred to the system from a cold reservoir is positive.

Heat transferred from the system to a hot reservoir is positive. Note also that in physics

the refrigerator is whatever system is moving the energy from place to place. It is often

some kind of compressor and fluid/gas. This is a little different from everyday usage where

the “refrigerator” (where you keep your food) is actually the cold reservoir.

In this cyclic refrigeration process the energy for work is supplied by the environment

(e.g., your wall socket and the compressor) to the system (the refrigerant – used to be

freon, now HFC-134) with the goal being the energy transfer Qc. Thus the useful measure

of efficiency is the coefficient of performance (COP) defined by*

COP =
Qc
W
.

Even though it is a bit of a rehash, I think it is instructive to briefly repeat the exercise of

using the first and second laws to put a limit on the COP.

As before, the first law tells us that at the end of a cyclic process:

∆U = 0 =⇒ Qc −Qh +W = 0,

so that

COP =
Qc

Qh −Qc
=

1
Qh
Qc
− 1

.

The change in entropy of the refrigerator engine is, of course, zero after a cycle. The

change in entropy of the environment (including the inside of the fridge, or the inside of

your house) is

∆S =
Qh
Th
− Qc
Tc
.

* Note that we use the original notation for the work W . In the context of refrigerators our
original convention, where W is the work done on the system, is being used.
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The second law then tells us that

Qh
Th
− Qc
Tc
≥ 0.

Hence
Qh
Qc
≥ Th
Tc
,

and

COP ≤ 1
Th
Tc
− 1

Alternatively,

COP ≤ Tc
Th − Tc

.

You can see that the COP can be greater than one – indeed, it is unbounded as

Th → Tc! The refrigerator can be most efficient when Th and Tc are near each other. Of

course, if Th ≈ Tc not much cooling gets done!

For a given Th and Tc one can use a Carnot cycle, reversed from what we did with the

heat engine, to get the COP arbitrarily close to its upper bound (at the expense of cooling

things down more and more slowly).

Let us estimate the maximum possible COP for an air conditioner operating in a typical

home. We assume the inside of the house – the cold reservoir – is kept at 20 C, and the

outside of the house – the hot reservoir is at 35 C. We then get

COP ≤ 293

15
= 19.5.

This means that a “perfect” air conditioner would remove 19.5 joules of energy for every

joule it cost you to run it.

It is perhaps worth noting that non-ideal processes modeling engines and real refrigera-

tors are not necessarily the reverses of each other. For example, we studied the rectangular

process of problem 1.34, figure 1.10 b, which was an engine: heat was absorbed in steps A

and B, heat was expelled in steps C and D, work was done in steps B and D. Note that

the temperature is climbing as you move from A to B, then declining as you move from C

to D. Running this in reverse, heat is absorbed from a cold reservoir in steps D and C, and

expelled to a hot reservoir in steps B and A. As you go through the process DCBA the

temperature is climbing, eventually the temperature of the gas upon which work is done

has to be bigger than that of the cold reservoir (e.g. the inside of the fridge) this won’t do

if your goal is to cool it down.
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