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Microstates and Macrostates

What is thermal equilibrium? What is temperature? Why does heat transfer energy

from higher to lower temperatures? One cannot get very far with such questions in tra-

ditional thermodynamics because thermal equilibrium, heat and temperature are more or

less defined via the laws of thermodynamics. We have introduced the concepts of tempera-

ture and heat via the zeroth and first laws. Our next subject will be the second law, which

characterizes (among other things) heat transfer of energy and relaxation to equilibrium.

To understand the origins and meaning of the second law it is instructive to take a pretty

general look at the microscopic statistical behavior of a macroscopic system. This leads to

a number of payoffs: a better understanding of the idea of temperature and heat, plus a

new, very profound observable: the entropy.* This is what we will do now.

By analyzing the microscopic structure of systems to understand their thermodynamic

behavior, we are going beyond traditional thermodynamics. The realm we are entering is

sometimes called statistical thermodynamics.

We first introduce the very fundamental statistical ideas of microstates and macrostates.

Given a system (e.g., a gas), we view it as built from some elementary constituents, (e.g.,

molecules). Each constituent has a set of possible states it can be in. The thermodynamic

state of the system (which characterizes the values of macroscopic observables such as

energy, pressure, volume, etc. ) corresponds to many possible states of the constituents

(the molecules). The collection of states of all the constituents is the microstate. To keep

things clear, we refer to the macroscopic, thermodynamic state as the macrostate. The

vast disparity between the number of possible macrostates versus microstates is at the

heart of thermodynamic behavior! The number of distinct microstates giving the same

macrostate is called the multiplicity of the macrostate. The multiplicity is a sort of micro-

scopic observable which can be assigned to a macrostate.

Here’s an elementary example. Consider what happens when you roll a pair of dice.

Think of the 2 dice together as playing the role of the macroscopic system, and let the

individual dice play the role of the microscopic constituents. Then the two individual dice

values be the microstate and the total value of the dice roll defines the macrostate. There

* The entropy can be defined as a thermodynamic observable with no reference to an un-
derlying statistical model, but it is much more instructive to derive it from microscopic
considerations.
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are 11 macrostates: (2, 3, 4, . . . , 11, 12). Let us compute the multiplicities of each of these

macrostate. We display them as pairs:

(macrostate, multiplicity) =

(2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 5), (9, 4), (10, 3), (11, 2), (12, 1).

By the way, you can see the relative probabilities for various dice rolls here, assuming that

each microstate is equally likely. For example, it is 6/2 = 3 times more likely to roll a seven

than to roll a 3. To get the actual probabilities of a given macrostate you have to figure

out the probability for an individual microstate – always 1/36 in the dice example – then

multiply by the multiplicity.* So, for example, the probability of rolling a 4 is 3/36 = 1/12.

(Note that the mulitiplicities add up to 36, so that the probability for getting anything

between 2 and 12 is 1/36 + 2/36 + · · ·+ 1/36 = 1.)

In the dice example, there were 2 constituents and each constituent had 6 possible

states, leading to 6 × 6 = 62 = 36 possible microstates. Macroscopic systems have many

constituents so we should explore what happens when there are many constituents. If

there are N constituents, and each has p states, then there are pN possible microstates.

This number can be enormous. Already for 2 dice we had 36 microstates. The number

of macrostates is smaller — much smaller for large N — than the number of microstates.

For the dice we had 11 macrostates. For three dice we have 63 = 216 microstates and 16

macrostates.

As another example, suppose you had N coins. These are the constituents of your

system and each has two possible states: heads (H) and tails (T). There are 2N possible

microstates. If a macrostate is specified by the number of heads and tails, how many

macrostates are there? Well, first of all, you must note that if there are NH heads, then

there will be N −NH tails, so we only need to see how many possible values there are for

NH .† This is N+1, as you can easily see. What are the multiplicities of these macrostates?

How many ways can you arrange NH heads among N coins? We are trying to pick NH
coins to be heads out of N total coins – how many ways to choose NH objects out of N

objects? This is a fundamental question from combinatorics. The answer is given by the

binomial coefficient
(
N
NH

)
.

In case you don’t know this or recall it, the binomial coefficient
(n
m

)
, spoken of as “n

choose m”, is given by (with n ≥ m):( n
m

)
=

n!

m!(n−m)!
.

* Equivalently, divide the multiplicity by the total number of microstates.
† By the way, if you view this macroscopic system as having only the two observables, NH

and NT , then the dimensionality of the system is unity, since measuring either of the
observables determines the (macro)state.
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This is the number of distinct ways of choosing m objects from a collection of n objects.

(Note that this formula passes some simple sanity checks: When m = n, we have
(n
n

)
= 1;

when m = 1 we get
(n

1

)
= n. Try some other simple examples.) The binomial coefficient

can often be used to compute multiplicities - you just have to find a way to formulate

the counting problem as choosing m objects from n objects. Sometimes this takes some

ingenuity.

Anyway, the multiplicity of a macrostate of N coins with NH heads and NT = N−NH
tails is given by (

N

NH

)
=

N !

NH !(N −NH)!
=

N !

NH !NT !
.

Since the total number of microstates is 2N we see that the probability P (NH) for getting

NH heads is

P (NH) = 2−N
N !

NH !NT !
.

Quantum Paramagnet

This same sort of counting can be used to compute the multiplicities of macrostates

in an elementary (quantum!) model of a paramagnet. We can view the paramagnet as

N magnetic moments each of which can be in 2 states – either pointing parallel or anti-

parallel to some given axis (determined, e.g., by an applied magnetic field). These states

are referred to as “up” and “down”, respectively. The total magnetization M along the

given axis of the paramagnet is then proportional to the differenceNup−Ndown = 2Nup−N .

Evidently, the macrostate specified by M has multiplicity Ω given by the number of ways

of choosing Nup magnetic moments to be “up” out of a total of N magnetic moments. We

have

Ω =

(
N

Nup

)
.

Paramagnetism is like coin tosses!

Einstein Solid

As a last, but important, example of microstates, macrostates and multiplicities, let

us consider the Einstein model for a solid. We will use this simple model to make our first

attack on the microscopic meaning of temperature and heat. The Einstein model of a solid

will, like the ideal gas, be a standard example for many subsequent ideas.

The model amounts to viewing a solid as a collection of identical three-dimensional

oscillators. Each three-dimensional oscillator can be viewed as 3 one-dimensional oscilla-
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tors. Thus the Einstein solid can be viewed as having N constituents, each of which is a

1-d oscillator (so the number of 3-d oscillators— atoms — is N/3.)*

As you may recall, quantum mechanical oscillators in one-dimension have energies

(n + 1
2)h̄ω, n = 0, 1, 2, . . ., where ω is the natural angular frequency of the oscillator.

Note the difference in energies between adjacent states is always the same, h̄ω. Evidently,

the (macroscopic) internal energy U ranges from the ground state energy N
2 h̄ω (the “zero

point energy”) to arbitrarily large values. If we measure energy relative to the ground state

energy and divide it by h̄ω we can characterize the energy of the solid by a non-negative

integer

q =
U − Nh̄ω

2

h̄ω
.

So, if all the oscillators are in their ground state — all the n’s are zero — we have q = 0.

If one oscillator is in its first excited state — one of the n’s is unity, the rest are zero — we

have q = 1, and so forth. As you can see, q counts how many units of energy h̄ω have been

added to the ground state energy (irrespective of how the energy is divided up among the

oscillators).

We consider macrostates determined by the total energy of the system – all the oscilla-

tors; we keep all other observables fixed. Thus the macrostate of the solid is determined by

q (if we just consider the energy observable). The microstates here are just an assignment

of a value of n to each of the N oscillators. For given values of q and N , a simple argument

developed in your text shows that the multiplicity Ω(N, q) of the macrostate is given by

Ω(N, q) =

(
q +N − 1

q

)
=

(q +N − 1)!

q!(N − 1)!
.

To see how this works, let N = 3. If we choose q = 0 (all oscillators in their ground state),

the multiplicity should be one. We have

Ω(3, 0) =

(
2

0

)
=

2!

0! (2− 0)!
= 1,

of course. If we choose q = 1, this corresponds to having 1 oscillator in its first excited

state, and the other two oscillators in their ground state. We should have Ω(3, 1) = 3,

right? We do indeed have (
3

1

)
=

3!

1! 2!
= 3.

* A better model of the solid uses the normal modes of the coupled oscillator system de-
scribing the motion of the atoms near equilibrium. These normal modes of vibration are,
in the quantum domain, known as phonons. While we shall refer to Einstein’s formula-
tion of the model, whether we use phonons or atomic oscillators we get pretty much the
same basic results (although the frequencies of the oscillators differ significantly in the two
cases). Really what we are studying here is the statistical thermodynamics of a system of
N oscillators.
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More generally, for any N , when q = 1 we get Ω(N, 1) = N , as you should expect. You

can try some other examples.

Large numbers – using Stirling’s approximation to compute multiplicities and

probabilities

Thermodynamic behavior is a consequence of the fact that the number of constituents

which make up a macroscopic system is very large. We need to get good at dealing with

large numbers. Here is a nice, illustrative exercise (see Problem 2.16 in your text).

Suppose you have 2 coins and you flip them. Let the macrostate just be determined

by, say, the number of heads which appear. What is the probability distribution for

the macrostates? We could use the general formulas, but it is easy to compute this di-

rectly. There are 22 = 4 possible microstates (HH, HT, TH, TT). The multiplicity of the

macrostate with two heads is one, as is the multiplicity of the macrostate with 2 tails. The

multiplicity of the macrostate in which one is heads the other tails is 2. The probability

for two heads is the same as the probability for two tails: 1/4. The probability for a heads-

tails macrostate is 1/2. So the heads-tails result is more likely, but not overwhelmingly

so. You wouldn’t be shocked if you flipped the coins and got two heads. The probability

distribution can be expressed as

(macrostate, probability) = (2 heads,
1

4
), (1 head,

1

2
), (0 heads,

1

4
).

We have already noted in the context of rolling dice that the macrostate with the

largest multiplicity is the most probable outcome of a dice roll (lucky 7). We see that

result here, also. As you might imagine, this is a general rule: if all microstates are equally

likely, the most probable macrostate is the one with the highest multiplicity.

For a small number of microsystems, the probability distribution tends to be wide – a

wide range of macrostates have appreciable and/or comparable probability. The situation

changes dramatically when larger numbers come into play. Suppose you have 1000 coins

and flip them (or, if you like, you have one coin and you flip it 1000 times). What is the

probability P (500) of getting exactly 500 heads and 500 tails? Assuming as usual that all

microstates are equally probable, the probability is given by the multiplicity of the given

macrostate divided by the total number of microstates. The total number of microstates

is 21000. The multiplicity of the macrostate with 500 heads is

Ω(500) =

(
1000

500

)
=

1000!

500!2
.

Naive manipulation of such large numbers can quickly get out of hand. Here is a standard

strategy. We estimate the factorials appearing in Ω(500) using Stirling’s approximation in
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the form:

N ! ≈ NNe−N
√

2πN.

This approximation is more and more valid the larger N becomes — try it. Using this

approximation, we have

Ω(500) ≈ 21000
√

500π
,

so that the probability is given by

P (500) =
Ω(500)

21000
≈ 1√

500π
≈ .025.

This is not so large. It’s not that easy to get exactly a 50-50 split. But it is very likely

that the result is nearly 50-50. To see this, consider the probability P (600) for 600 heads

and 400 tails. A similar computation gives (try it!)

P (600) ≈ 10−11.

It is not too hard to study the multiplicity formula and deduce that the macrostate with

500 heads is in fact the most probable macrostate. Evidently, the probability distribution

is sharply peaked about the most probable macrostate by virtue of the large numbers

involved.

Just to be complete, here is another (less accurate) version of Sterling’s approximation:

ln(N !) ≈ N ln(N)−N.

We can compare it to our earlier, more accurate version by taking the logarithm:

ln(N !) ≈ N ln(N)−N + ln(
√

2πN).

Evidently, the simpler approximation is off by ln(
√

2πN). If N is really large, then this

term is negligible in the first approximation compared to N . The simpler (albeit less

accurate) form of Sterling’s approximation is usually employed when we are trying to

approximate the logarithm of a large factorial.

Large numbers for Einstein Solids

Now we use our approximation methods to derive an approximate formula for the

multiplicities of macrostates for the Einstein solid, valid for a macroscopic system. Once

we have this formula under control, we will be ready to discuss the microscopic, statistical

meaning of thermodynamic equilibrium, temperature and heat — at least in the context

of this simple model of a solid.
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We begin by assuming that both N and q are “large”, as they should be for a macro-

scopic system. We write N, q >> 1. We then have, as you can easily see,

Ω(N, q) =
(q +N − 1)!

q!(N − 1)!
≈ (q +N)!

q!N !
, q,N >> 1.

We’re not done. For any macroscopic solid (withN ∼ 1023, say) the factorials are enormous

since both N and q are much greater than 1. To get a handle on them we take a logarithm

and use the simple form of Stirling’s approximation,

ln(n!) ≈ n ln(n)− n, n >> 1,

to get
ln Ω(N, q) ≈ ln[(q +N)!]− ln(q!)− ln(N !)

≈ (q +N) ln(q +N)− q ln(q)−N ln(N) N, q >> 1.

Next we assume that q >> N . This assumption can be interpreted as saying that most

oscillator degrees of freedom are highly excited compared to the ground state. This will

turn out to be a high temperature approximation.* To take advantage of this assumption

we write

ln(q +N) = ln[q(1 +
N

q
)] = ln(q) + ln(1 +

N

q
).

The Taylor series of the logarithm ln(1 + x) about x = 0 is

ln(1 + x) ≈ x x << 1.

Identifying x with N
q we then get

ln(q +N) ≈ ln(q) +
N

q
, q >> N >> 1.

Using this approximation in the multiplicity we have

ln Ω(N, q) ≈ N ln(
q

N
) +N +

N2

q
≈ N ln(

q

N
) +N, q >> N >> 1.

In the last approximation we have neglected N2/q compared to N . This is a good idea

since
N2

q

N
=
N

q
<< 1.

* High temperature is relative — here we do not necessarily mean core of the sun types of
temperatures or anything like that. “High” means there is enough energy in the system
such that the oscillators are behaving classically. A good estimate of the temperature
needed is given by kT >> h̄ω. If atomic vibrational energies are estimated to have size
about 10−2 eV , then “high temperature” means on the order of 102 K or greater, which
includes room temperature.
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Now take the exponential of each side to get

Ω(N, q) ≈
(qe
N

)N
, q >> N >> 1.

This is the expression for the multiplicity of an Einstein solid we shall use to understand

heat and thermal equilibrium. This formula is valid for a macroscopic system (N >> 1)

at “high” temperature (q >> N).

Interacting Einstein solids

With our macroscopic, high temperature approximation in place, we can now address

the interaction of two such Einstein solids. The goal is to understand better the meaning of

temperature and heat. We will take two Einstein solids as our system. The two solids will

be “isolated”; they will not be allowed to exchange energy with the rest of the universe. On

the other hand, the two solids will be in “thermal contact” — we allow them to exchange

energy with each other. Our goal is to determine the most likely equilibrium state for the

two solids and interpret this in terms of the macroscopic notions of temperature and heat.

Denote the two Einstein solids by A and B, each with macrostate determined by qA
and qB . For simplicity, we initially assume the solids are identical in the sense that they

have the same number of oscillators and the same frequency of oscillator vibrations. (We

shall relax this assumption soon.) The solids are identical in structure, but the macrostate

of each solid, determined by qA or qB , can be different. We will isolate the two solids from

the rest of the universe so the total energy — determined by q = qA + qB — is fixed, but

the two solids can exchange energy thus changing the values of qA and qB . Our plan is to

figure out what are the most likely values for qA and qB . The macrostate of the combined

system is determined by qA and qB .

To this end, let’s write down the multiplicity Ω of the macrostate of the combined

system determined by q = qA + qB for a given qA and qB . Assuming the interaction

between the two solids is sufficiently weak, the multiplicity of the combined system is just

the product of the individual multiplicities for the two solids:

Ω ≈
(qAe
N

)N (qBe
N

)N
=
( e
N

)2N
(qAqB)N , qA, qB >> N >> 1.

Notice that the multiplicity of the macrostate depends upon the energies of the individual

solids, qA and qB . We would now like to figure out for which values of qA and qB is

the multiplicity for the combined sytem (just computed) the largest — this will evidently

determine the most likely values for qA and qB . Since the number of constituents of each

solid is so large, we expect that the system will have negligible probability to be in a state

which differs appreciably from the most probable (highest multiplicity) state.
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Keeping in mind that q = qA + qB is fixed, this can be easily translated into a simple

calculus problem: find the values of x = qA such that f(x) = [x(q − x)]N is maximized.

First we must find the critical points of f , where the first derivative of f vanishes. We

have
df

dx
= N [x(q − x)]N−1(q − 2x).

This vanishes when x = 0, q, q/2. The first two cases correspond to a minimum of the

function, the last gives the maximum. (You could also see this by computing the second

derivative at the critical points.) So, given q, the multiplicity is largest when

qA = qB =
q

2
,

i.e., the energy is equally shared between the (identical) solids. The maximum multiplicity

is

Ωmax ≈
( eq

2N

)2N
, q >> N >> 1.

So — assuming all microstates are equally likely (see below) so we can use multiplicities

to determine probabilities — if you allow the identical solids to exchange energy, the most

likely outcome is that the one with less energy will gain energy from the one which has more

energy so that the two end up with the same energy. Are there other possibilities? Sure.

The energy of each solid and the energy per oscillator in each solid fluctuates, statistically

speaking. But any result in which qA is not very close to qB is so unlikely as to be ignorable

(recall the result with a very large number of coin tosses.) The idea of thermodynamics is

to suppose that there are enough constituents to ignore all but the most likely result. Let

us elaborate on this a little.

As shown in your text, in the vicinity of the maximum the multiplicity for the combined

system is a Gaussian. The macrostate of the total system is determined by qA. Setting

x = qA −
q

2
,

we have the multiplicity of the solid being given by

Ω ≈ Ωmaxe
−N
(
2x
q

)2
, |x| << q.

The Gaussian is peaked when x = 0 where Ω = Ωmax (of course) and has a width† of
q

2
√
N

. Is this wide, narrow, or what? Well, first of all, notice that the order of magnitude

of relevant qA values is of order q. For N ∼ 1024 the width is of order q
1012

. The Gaussian

is very narrow! (Just like in our coin toss example.)

† “Width” of a Gaussian is defined as the value of x such that the Gaussian has reaced 1/e
of its maximum value.
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What happens if the solids are of different “size”, i.e., have different numbers of os-

cillators? Let the number of oscillators be NA and NB with N = NA + NB . Now the

multiplicity is

Ω ≈
(
qAe

NA

)NA
(
qBe

NB

)NB

.

You should try your calculus skills to see if you can find when this function is maximized

as a function of qA and qB (keeping in mind that qA + qB = q is fixed). You’ll find

qA =
NA
N
q, qB =

NB
N

q.

Assuming again that all microstates are equally likely (see below), this implies that the

most probable situation is that
qA
NA

=
qB
NB

=
q

N
,

i.e., the energy per oscillator of both solids is the same — and is the same as the energy

per oscillator of the composite system. As before, one can show that the multiplicity is a

Gaussian which is very narrowly peaked about its maximum value. Note that this result

includes our previous special case when NA = NB .

To summarize: For two macroscopic Einstein solids, characterized by a large number of

microsystems and macroscopic energy (high temperature), the multiplicity is very sharply

peaked about the configuration where the two sub-systems have the same energy per

oscillator. As we let the number of constituents become arbitrarily large, the statistical

fluctuations about this configuration become arbitrarily small. Notice that this result,

which clearly illuminates heat and temperature, is a consequence of the fact that there are

many constituents – we never had to commit ourselves to how they interact except to say

that they can “exchange energy”.

The fundamental assumption of statistical mechanics. The second law.

Now we are ready to use all this multiplicity mathematics to understand heat transfer

and thermal equilibrium. Suppose we are given two macroscopic systems which are isolated

from the rest of the universe, but are coupled so that they may exchange energy. We assume

that the coupling is not so strong as to disturb the microsystem structure significantly (e.g.,

they may be modeled as two Einstein solids exchanging energy). These assumptions are

relatively minor. Our next assumption is significant; it is the Fundamental Assumption of

Statistical Mechanics:

In an isolated system at thermal equilibrium, all microstates are equally likely.

10



Microstates and Macrostates. Multiplicities. The Second Law.

The idea here is that at the microscopic level, transitions between states are reversible.

For any two states, call them x and y, the probability for making a transition from x→ y

is the same as the probability for going from y → x. This, principle – known as the

“principle of detailed balance” – is born out by explicit computation in the framework of

quantum mechanics, by the way. So, at the microscopic level it is reasonable to make the

fundamental assumption. By the same token, it now becomes difficult to see where irre-

versible thermodynamic behavior comes from! Many processes in nature appear to only go

in one direction – think of the free expansion of a gas. Of course, what distinguishes micro-

scopic from macroscopic systems is the large numbers (e.g., q and N) characterizing the

constituents in the macroscopic case. Given the fundamental assumption above, we know

that the (relative) probability distribution for macrostates is given by the multiplicities.

And we have seen (at least in the Einstein solid example) how the multiplicity function is

very sharply peaked about the state in which the two systems have the same energy per

(oscillator) degree of freedom. In the Einstein solid example if, say, system A has all the

energy initially, when equilibrium occurs it is overwhelmingly probable that systems A and

B will have (nearly) the same energy per oscillator – the energy gets divided up evenly

among all the oscillators. In light of the zeroth law, it is natural to associate the energy

per degree of freedom with (some function of) the temperature — so that at equilibrium

the temperature of both solids is the same. Note that this is not the statement that the

energy of the solids is the same. The energies of the two solids are related by

qA
qB

=
NA
NB

.

We have seen this before: the temperature of a system is more like “energy per degree of

freedom” than “energy of the system”.

We can view the fundamental postulate as, in effect, defining equilibrium microscopi-

cally in terms of equally probable microstates. Equally important, we now have arrived at

a microscopic, statistical version of the second law of thermodynamics: the state of an

isolated thermodynamic system in equilibrium is the one with the greatest multiplicity. In

particular, we see that relaxation to equilibrium is a process in which multiplicity increases

to its maximum value. This version of the law is very instructive, but – unlike the zeroth

and first laws – it implicitly involves a microscopic description of the thermodynamic sys-

tem (so one can talk about microstates and multiplicities). We will soon come up with a

version of the second law which makes no reference to the microstructure of a system.

Notice that we included the term “isolated” in the fundamental assumption of sta-

tistical thermodynamics, and in the above statement of the second law. This means

the system is closed and, in particular, its energy is fixed. The statistical description

of macro/microstates of a closed system with fixed total energy (and volume and num-

ber of particles) is known as the micro-canonical ensemble. Here “ensemble” refers to
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the hypothetical large number of copies of the system which you could use to interpret

probabilities in terms of frequencies.*

To summarize: using a microscopic description in terms of a very large number of

constituents we have given statistical interpretation of the zeroth and first laws of ther-

modynamics, namely: Thermal equilibrium means that all microstates are equally likely.

Energy in a closed system is conserved. And we have introduced a new law, the second

law, in a statistical form: Equilibrium states maximize the multiplicity.

Multiplicity of the Ideal Gas

In the previous paragraphs I have drawn conclusions about generic thermodynamics

systems based upon the Einstein solid example. This is all fine as far as it goes, but a

single example is hardly compelling evidence for a general law. Let us look at another

example and see how the same sort of behavior occurs.

We consider the multiplicities of macrostates of an ideal gas. This turns out to be

technically a little less transparent than what we got by simple counting for the Einstein

solid. You will see that the details are very different, yet the same sorts of conclusions

about thermal equilibrium apply.

For simplicity we consider a monatomic gas (e.g., Helium). The internal energy we

consider is the total kinetic energy of the atoms. Suppose there are N atoms with mass

m. Each atom has a particular 3-dimensional position and momentum, each given by 3

components. So, all together there are 3N position and 3N momentum components which

we denote by xi and pi, i = 1, 2, . . . , 3N . The (kinetic) internal energy is the sum of 3N

one-dimensional kinetic energies:

U =
3N∑
i=1

1

2m
p2
i .

A macrostate is determined by specifying U and, say, the volume V (and N if we wish).

The choice of V constrains the positions of the atoms. The choice of U constrains their

momentum. The microstates are then an assignment of values to all the positions and

momenta (xi, pi) of the atoms subject to these constraints.

We wish to compute the multiplicity of a state as a function of U and V (and N).

What makes the analysis a little more tricky here is that the positions and momenta

can vary continuously — naively it would appear that the multiplicity of any macrostate

* Later we shall encounter another kind of ensemble, the canonical ensemble, which corre-
sponds to an open system in thermal equilibrium with an environment at a given temper-
ature. Now the temperature is fixed instead of the energy, which undergoes (statistical)
fluctuations.
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should be infinite! Quantum mechanics and its uncertainty principle (which puts a limit

on the resolution of volumes in position-momentum space) render the number of states

finite. A hand-waving type of argument in the text establishes the following formula for

the multiplicity:

Ω(N,U, V ) =
1

N !

V N

h3N

2π
3N
2

(3N
2 − 1)!

(2mU)
3N−1

2 .

Here N is the number of atoms, U is the (kinetic) energy, h is Planck’s constant, V is the

volume of the gas. You might notice that we have introduced the factorial of a half-integer.

This is defined by

(n+
1

2
)! =

√
π

n∏
k=0

2k + 1

2
,

where n is a non-negative integer. So, for example, if n = 1 we have

3

2
! =
√
π(

1

2
)(

3

2
) =

3
√
π

4
.

You should definitely read the argument leading to this expression for Ω in order to

see what are the ingredients. We shall give a precise derivation of this formula much

later, so I’ll defer the discussion of the derivation. Instead, let’s just see what the formula

means. First and foremost, note that the multiplicity grows with increasing volume and

with increasing energy. Let us see if we can understand the volume and energy dependence

of this expression.

You can see that the multiplicity varies as the N th power of the volume of the gas.

To understand this, recall that the microstates are a specification of the position (and

momentum) for each atom subject to the specification of the volume (and total energy).

The positions can be anywhere in the given volume. So the multiplicity coming from

possible positions for a single atom should be proportional to the volume, for two atoms it

is proportional to the square of the volume, for 3 atoms it proportional to the cube of the

volume, etc. . Another, fancier way to think about it is that specifying the positions of the

atoms is the same as specifying a point in a space of 3N dimensions, where the volume of

the space is V N .

The energy factor comes from considering the possible ways the momentum can be

divided up among the atoms, given the energy U . The energy condition defines a hyper-

sphere(!) with dimension 3N−1 and radius
√

2mU in the 3N dimensional space of possible

momentum at each location. The momentum contribution to the multiplicity should then

be proportional to the hypervolume of this hypersphere. This (not surprisingly - think

of the units) turns out to be proportional to the radius of the hypersphere raised to the

3N − 1 power, i.e., (2mU)
3N−1

2 ≈ (2mU)3N/2 when N >> 1. The multiplicity varies
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as the product of the energy and volume factors (as opposed to the sum, or the ratio or

something else) because for a given position you can vary the momentum and vice versa.

Next we use the fact that N is large to simplify the expression for Ω:

Ω(N,U, V ) ≈ 1

N !

V N

h3N

π
3N
2

(3N
2 )!

(2mU)3N/2, N >> 1.

Thus Ω is of the form

Ω ≈ f(N)V NU3N/2, N >> 1.

It is instructive to recall that the multiplicity of the Einstein solid with N atoms —

3N one-dimensional oscillators — and with energy defined by q was (for a large system at

high enough temperature)

Ω(N, q) ≈
( eq

3N

)3N
,

The degrees of freedom for each oscillator in the Einstein solid (in the sense of equipartition)

is f = 6.* So the energy dependence of the multiplicity for an Einstein solid is UfN/2. The

monatomic ideal gas we are considering here has f = 3 — corresponding to 3 translational

degrees of freedom — so the energy dependence of the multiplicity is also UfN/2. This

energy dependence of the multiplicity is typical of any system obeying the equipartition

of energy.

Finally I point out that the derivation of the multiplicity formula (see the text) assumes

the particles are indistinguishable: there is no measurement which can tell which particle

is which. All the atoms of the monatomic gas are intrinsically the same. This means that

the microstate with a given particle, say, particle number 1 in (position, momentum) state

(~x, ~p) and with particle 2 in the state (~x ′, ~p ′) is considered the same microstate as the one

in which particle 1 in state (~x ′, ~p ′) and particle 2 in the state (~x, ~p). This reduces the

multiplicity compared to the case where the particles are distinguishable in some fashion.

As a humble illustration of this point, recall how we counted multiplicities for a pair of

dice. There we treated the dice as distinguishable so that, for example, the multiplicity

was 2 for a roll totaling 3. If the dice were indistinguishable then the multiplicity would

be 1 for a roll of three.

Free expansion and . . . contraction

Here’s a nice application of the volume dependence of the multiplicity for an ideal gas.

It’s a bit of a digression, but it’s pretty neat. Suppose you have a container of volume V

filled with an ideal gas in a state with temperature T and pressure P . The container is in

* We will explain equipartition in detail a little later. For now, the 6 degrees of freedom
contribute to the energy according to 3 for the kinetic energy and 3 for the potential energy.
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an insulated, empty room of size nV (n > 1). If you open the container, you know what

will happen. When equilibrium is again established the gas will fill the room. Note that

no work or heat transfers took place; the process is called free expansion. (Can you see

why Q = 0 = W for this process?) Because the work and heat vanish, the energy of the

gas doesn’t change — this is from the first law. Thus a free expansion is an isoenergetic

process. From U = f
2NkT , it follows that the process is isothermal — the temperature is

still T at the new equilibrium.† The volume increased to nV and so, from the ideal gas

law, the pressure decreased to P/n. So, to summarize, the free expansion of an isolated

gas from volume V to, say, volume nV is a change of state characterized by

Q = 0 = W, V → nV, P → P/n, T → T.

The question I want to consider now is: can the reverse process occur? Can the gas

undergo a “free contraction” from nV into a smaller volume V ? In other words, can the gas

be at equilibrium at volume V , temperature T and pressure P? The first law and ideal gas

equations of state do not prohibit it. So why don’t we ever see this happen? The reason is

the very large number of microsystems, of course. Let’s analyze the expansion/contraction

scenario using our multiplicity function.

If there are N atoms in the gas the multiplicity for volume V is a factor of n−N smaller

than that for volume nV . At equilibrium at temperature T the value of U is the same,

so the probability to be in the smaller container is n−N times the probability to be in the

larger container. Let us assume the room is twice as large as the container, n = 2. For

starters, suppose there are 3 atoms.* The relative probability is 1/8. So it is less likely

to find the atoms occupying the smaller volume (at equilibrium), but not dramatically so.

Now suppose there are 100 atoms. Then the relative probability is 2−100 ≈ 10−30 – very

small! You’ll agree that 100 atoms is hardly a macroscopic system. When the system

is truly macroscopic, N ∼ 1023, the relative probability for the gas filling the container

versus filling the room is essentially zero. This is why the free expansion of a gas is, for all

practical purposes, not reversible. We say that the free expansion is irreversible. Contrast

this with, for example, the quasi-static isothermal expansion/contraction of a gas in a

cylinder which is a reversible process.

Two Interacting Ideal Gases.

Returning back to our main discussion, we consider two interacting identical ideal gases

A and B. You can imagine that the two gases are in a box of volume V = VA + VB which

† Note that this process should not be considered quasi-static. If you try to slowly enlarge
the box until it fills the room, work will be done and the energy and temperature can
change. This is fine, but it is not free expansion!

* Note that the derivation of the multiplicity formula (see text) reveals that the volume
dependence of the multiplicity is not restricted by any large numbers approximation.
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is partitioned into two volumes VA and VB by a wall which allows exchange of energy. We

assume for simplicity that the gases are identical in the sense that m and N are the same

for A and B. Let the total energy be U = UA + UB , which is held fixed – the system of

two interacting gases is isolated from its environment. The multiplicity for a given UA and

UB is then of the form

Ω = ΩAΩB = f(N)2(VAVB)N (UAUB)3N/2.

Let us study how the total multiplicity varies as a function of energy, volume, and

number of particles. The variation of energy is just like that of the Einstein solid. We can

then conclude that the multiplicity is sharply peaked in the vicinity of UA = UB = U/2

with width U√
3N/2

. For large enough N , this width is small, of course. So, again we see

that in thermal equilibrium it is overwhelmingly likely to find the gases to have the same

energy per degree of freedom (and hence the same temperature).

Let us consider how the multiplicity varies with volume. You could imagine that the

gases start off with some given initial energies and volumes and the partition is allowed to

move as (mechanical and thermal) equilibrium is approached. The volume dependence is

mathematically analogous to the energy dependence. It is sharply peaked when VA = VB
with width given by V/

√
N . So, again, for large N the width is small and it is almost

certain that we’ll find VA = VB when equilibrium occurs.

Finally, one can consider what would happen if NA 6= NB . The analysis here is more

complicated and I will spare you. But I will tell you the result: as with the Einstein solid,

the equilibrium state – the state with the biggest multiplicity – is the one where the energy

per degree of freedom is the same for both gases. This is, of course, just what we found

with the Einstein solid and corresponds to the temperatures being equal at equilibrium.

Similarly, the volume per degree of freedom is the same for both gases, which corresponds

to the pressures being equal for both gases at equilibrium.

While two examples hardly prove anything in general, we see how the ideas of mul-

tiplicity and equal probabilities for microstates at equilibrium conspire with very large

numbers of constituent microsystems to lead to familiar macroscopic results.
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