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Newton’s Third Law.

You’ve all heard this one.

Actioni contrariam semper et qualem esse reactionem: sive corporum duorum actiones

in se mutuo semper esse quales et in partes contrarias dirigi.

To every action there is always an equal and opposite reaction: or the forces of two

bodies on each other are always equal and are directed in opposite directions.

The idea here is the following. Often we consider a single body (or particle) with some

forces on it. That’s fine; it’s an example of an open system. The body interacts with its

environment. Newton’s third law proposes that all forces stem from interactions between

bodies and that these forces have a very symmetric character. In particular, if particle 1

exerts a force ~F12 on particle 2, and if particle 2 exerts a force ~F21 on particle 1, then these

forces are related by
~F12 = −~F21.

A good example of a force obeying the third law is the Newtonian gravitational force*

between two point masses m1 and m2. With G being Newton’s constant, we have

Fij =
Gmimj

|~ri − ~rj |3
(~rj − ~ri).

You can easily see that Newton’s third law is satisfied here. You can write down a mathe-

matically identical version of the law of electrostatic attraction and repulsion, thus seeing

that it satisfies Newton’s third law.

Newton’s third law, like any other law, is subject to experimental verification. It holds

in many situations. However, it is not hard to come up with a situation where the third

law is violated. Consider two electric charges, both moving toward a fixed point of space

with constant orthogonal velocities. Consider the instant of time when one of the charges

– charge 1, say –is at that fixed point of space (and still moving), directly ahead of the

other charge – charge 2. The net force between the charges does not obey Newton’s third

law (the electric force does, it is the magnetic force which causes this). In particular,

the magnetic force of charge 2 on charge 1 is zero because its relative position vector is

* I use the qualifier “Newtonian” here to emphasize that this force law is due to Newton
and that it has been superseded by Einstein’s theory of gravity, contained in his general
theory of relativity.
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parallel to charge 2’s velocity. The magnetic force of charge 1 on charge 2 is non-vanishing.

This result is not a relativistic effect, i.e., it occurs for arbitrarily slow speeds. Of course,

Newton could not be aware of this feature of the magnetic force.

The principle consequence of Newton’s third law (when it holds!) is conservation of

momentum for a closed system. In this context, a “closed system” means that all forces

have been accounted for in the definition of “the system”. Let us first consider the total

momentum of two bodies obeying Newton’s third law. The total momentum ~P is defined

as the vector sum of the individual momenta.* We model the bodies as particles, 1 and 2.

We have

~P = ~p1 + ~p2 = m1~v1 + m2~v2.

As the particles move, their position vectors change in time, as we have discussed. In

general, then, their velocities change in time yielding, in general, a time dependence for
~P . The time rate of change is

d~P

dt
= m1~a1 + m2~a2.

Using Newton’s second law we have

d~P

dt
= ~F1 + ~F2,

where the forces are the respective forces on each particle. Using Newton’s third law we

have
d~P

dt
= 0.

So neither particle’s momentum will be conserved, but the total momentum will. Think

of a binary star system.

It is not too hard to generalize this to any number of particles, if you don’t mind a little

notation. Suppose we have N particles, labeled by Latin letters, e.g., i, j = 1, 2, . . . N . Let
~Fij be the force of the ith particle on the jth particle, and that these are all the forces on

the system. Newton’s third law tells us that

~Fij = −~Fji.

Newton’s second law for the jth particle due to the force of the ith particle is

mj~aj = ~Fij .

* Why is momentum mass times velocity? Is it always defined that way? Why is the
total momentum conserved? All these questions will be answered when we explore the
Lagrangian form of mechanics.

2



Newton’s Third Law. Multi-particle systems. Conservation of Momentum.

Newton’s second law for the jth particle due to all the other particles is (using the super-

position principle)

mj~aj =
N∑
i=1
i 6=j

Fij .

The total momentum is

~P =
N∑
i=1

mi~vi.

The time rate of change of the total momentum is, as before,

d~P

dt
=

N∑
j=1

mj~aj =
N∑
j=1

N∑
i=1
i 6=j

Fij .

Because of Newton’s third law, every term in the double sum has a partner with which it

cancels – can you see that? We have

N∑
j=1

N∑
i=1
i6=j

Fij = ~F12 + ~F13 + . . . ~F21 + . . . + ~F31 + . . . = 0.

The particles whiz around with various time dependent positions, velocities and even

accelerations, but the total momentum does not change in time.

The above computation shows that Newton’s third law implies conservation of momen-

tum for a closed system.

More generally, if we let ~Fext be the net external force on the body (everything but

the pairwise inter-particle forces obeying Newton’s third law), then we have

d~P

dt
= ~Fext

It is this result that makes the particle model of an extended rigid body work so

well. The body is made of a large number of particles, and it is held together by a large

number of forces. But just so long as those forces obey Newton’s third law, they all cancel

when computing the time rate of change of the total momentum of the body. The body

accelerates according to the net external force on the body. Indeed, consider the center of

mass of the body, defined by

~R =
1

M

N∑
i=1

mi~ri,
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where M =
∑

imi is the total mass of the body. Letting the particles trace out their

curves in time, we can easily compute the time rate of change of ~R; we have, from our

previous calculation,
d2 ~R

dt2
=

1

M
~Fext.

So, the particle model of a rigid body works, largely in part thanks to Newton’s third law.

If we model the body as a particle with mass given by the total mass of the body and

located at the center of mass, then it obeys Newton’s second law.

Newton’s third law for a closed system implies conservation of (total) momentum. We

have seen that the magnetic force between two particles need not obey Newton’s third

law. What becomes of momentum conservation? The answer is that the momentum

ledger must include contributions from the electric and magnetic fields. You recall that

these fields carry energy and momentum? Taking this new electromagnetic ”stuff” into

account, momentum is in fact conserved.

Example: The Rocket

Rocket propulsion is one of the more fundamental and important examples of Newton’s

laws. It is also slightly tricky, so it is worth explaining here.

We work in the rest frame of the Earth. We let the rocket move along the x-axis. At

time t let the rocket have mass M(t) and velocity ~V (t) = V (t)̂i. For now we assume that

there are no external forces on the rocket – it (including its fuel) is a closed system. Thus

its momentum is conserved; we shall use this in a moment. Let a small time dt pass. Some

fuel is burned and exhaust gases expelled. We have

M(t + dt) = M(t) + dM, V (t + dt) = V (t) + dV.

(Here the differentials should be thought of as sufficiently small physical quantities. Of

course, we will take the limit as they become vanishingly small when it is convenient. )

Evidently, the mass expelled is controlled by dM < 0. Let v0 be the speed at which the

mass is expelled relative to the rocket; we assume this is constant in time and fixed by the

rocket’s design. The velocity at which mass is expelled relative to the Earth is (V (t)−v0)̂i.

It is this velocity that will feature in conservation of momentum as computed in the inertial

reference frame fixed relative to the Earth. Conservation of momentum tells us that the

momentum at time t + dt is the same as the momentum at time t. The total momentum

at time t is just M(t)V (t)̂i. The rocket’s momentum at time t + dt is

(M(t) + dM)(V (t) + dV )̂i

The expelled fuel’s momentum at time t + dt is

(−dM)(V (t)− v0)̂i.

4



Newton’s Third Law. Multi-particle systems. Conservation of Momentum.

So, conservation of total momentum says:

(M(t) + dM)(V (t) + dV )− dM(V (t)− v0) = M(t)V (t).

Since the differentials are (arbitrarily) small quantities, we can neglect their products

relative to the linear terms. Thus we have

dM V + MdV − dM(V − v0) = 0.

This simplifies to

MdV = −v0dM.

Dividing both sides by dt and taking the limit as the infinitesimals become arbitrarily

small we get

M(t)
dV (t)

dt
= −v0

dM(t)

dt
.

A very simple equation controlling the acceleration of the rocket!

We can integrate this equation easily enough. We write it as

dV

dt
= −v0

d lnM

dt
,

This has a solution

V (t) = v0 ln

(
M0

M(t)

)
+ V0.

Here M0 is the initial mass of the rocket, which it has when its speed is V0.

It is easy to include external forces in this analysis. Let us add in gravity, with force

−M(t)gî. Now the change of momentum equation is

dMV + MdV − dM(V − v0) = −Mg,

giving

M(t)
dV (t)

dt
= −v0

dM(t)

dt
−M(t)g.

Multiply both sides by dt. Divide both sides by M . Then integrate. We get

V (t) = V0 + v0 ln

(
M0

M(t)

)
− g(t− t0).

This formula gives the speed of the rocket in terms of the rocket’s design parameters,

namely v0 and M(t).

This formula explains why NASA’s budget is so large. Suppose the exhaust gases

are moving at 2 km/s relative to the rocket, which Wikipedia says is a reasonable value.

Suppose the rocket starts from rest. Let’s see how much mass gets used up to get the
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rocket to Earth’s escape velocity, which is 11.2 km/s. We assume that the rocket burns

fuel such that that the burn time is on the order of a minute or less. We do this by setting

dM

dt
=

M0

100
.

We have

v0 = 2 km/s, V0 = 0, V (t) = 11.2km/s, g = 9.8m/s2, t = 100− 100M/M0.

This gives (try it!)
M0

M
= 441

when escape velocity occurs. So, the rocket needs to carry over 400 times more fuel than

payload!
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