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Newton’s Second Law.

Needless to say, Newton’s second law holds only in inertial reference frames. We have:

Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam

rectam qua vis illa imprimitur.

The alteration of motion is ever proportional to the motive force impressed; and is

made in the direction of the right line in which that force is impressed.

This is of course, the famous “F = ma”, once we interpret “alteration of motion” as

“acceleration” and combine “motive force” and “direction” into the force vector. Apart

from examples and applications, there is a lot going on “under the hood” which we need

to discuss.

First of all, let us deal with a common mental mistake made by beginners. It is perhaps

tempting to read Newton’s second law as a literal identification of force with mass times

acceleration. This is not the way to think of it. Think of it as follows. You are in the lab.

You have set up an experiment, say, where you have connected a spring to a body (modeled

as a “particle”, if you like). You displace the mass from equilibrium, let it go, and measure

the position as a function of time, so that you now have access to velocity as a function of

time and acceleration as a function of time, too. You can measure the acceleration quite

directly; that’s the point. You now do this for a variety of bodies with a variety of initial

conditions. What you find is that the accelerations for different bodies are, in general,

different. The observation of Newton is, though, that associated to each body there is a

single constant – the mass – which when multiplied by the acceleration vector gives a single

vector field – the force – which is the same no matter which body is used. This force will,

in general vary in position, velocity, and in time (as does the acceleration) – this has to be

made considerably more precise, which we shall do momentarily. The idea here is that we

can take the point of view that all the bodies are being influenced by a single entity – the

force – and this gives rise to a wide variety of accelerations, depending upon the mass of

the body, its position, and so forth. The acceleration is a property of a given body’s state

(of motion) and is only defined on a given curve. The mass is an intrinsic property of the

body. The force is an external field quantity characterizing the body’s interaction with its

1



Newton’s Second Law.

environment. Don’t think of “F = ma” as an identification of two quantities. Think of it

as expressing the response (acceleration) of a body to an external influence (force).

With all this conceptual stuff in mind, we can give a much more precise statement of

the second law using the language of physics: mathematics. Given a curve ~r(t) depicting

the motion of a body obeying Newton’s second law, we have

~F (~r(t), ~v(t), t) = m~a(t).

I have been very pedantic with the notation here. Much more pedantic than you have

probably seen before. The usual, much cleaner looking version of the formula: ~F = m~a, is

perfectly ok if you already know what you are doing. It can be disastrous if you don’t. The

idea of this formula is that you have a curve, ~r(t), representing the motion of a particle.

We then have, of course, three functions of time representing the velocity and three more

functions of time representing the acceleration of the body at time t:

~v(t) =
d~r(t)

dt
, ~a(t) =

d2~r(t)

dt2
,

as we have discussed. Now for the force. The force is, a priori, viewed as a three-

dimensional vector field in a seven-dimensional space! That is, it is a vector in Euclidean

space which depends upon (in general) position, velocity, and time. This is best explained

via examples.

First, let us consider the mass on a spring alluded to above. Ignore all forces except

the force due to the spring for simplicity. Orient the x-axis along the spring. The force is

~F = −k x î.

In this case the force depends only upon position: ~F = ~F (~r) = ~F (x, y, z) – in fact, it only

depends upon x in our chosen coordinates, ~F = ~F (x). In any case, you can see that the

force is certainly a vector field (a family of vectors) instead of just a vector.

Let’s look at another example. Let the body be a particle of charge q moving in a

uniform magnetic field ~B. Pick the z axis to be along ~B so that ~B = Bk̂. The force on

the particle is (from the Lorentz force law):*

~F = q~v × ~B = qB
(
vy î− vx ĵ

)
.

Here ~v is, of course, the velocity of the particle. You see in this case that ~F = ~F (~v) =
~F (vx, vy). As you know, the magnetic field usually depends upon position – it’s a vector

* Make sure you can derive this last equality!
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field after all. In this case we have, of course, ~F = ~F (~r,~v). For example, if the uniform

field used above grows linearly with z, say,

~B = βzk̂,

we have
~F (~r,~v) = qβz

(
vy î− vx ĵ

)
.

Here β is a constant.

As a third example, lets consider time-dependent forces – we are focusing on the third

argument of ~F (~r,~v, t). Consider an electron in a sinusoidally oscillating uniform electric

field,
~E = E cos(ωt) î.

The force on the electron (viewed as a particle, of course) is

~F = q ~E = qE cos(ωt) î.

You see that t sitting there inside the cosine? That’s the t in the general notation ~F = ~F (t).

Finally, I think you can see how all 7 variables can be used to determine ~F = ~F (~r,~v, t).

Just consider an electron moving in the combined electromagnetic field described above!

To write down Newton’s second law we take ~F = ~F (~r,~v, t) and evaluate it on the curve

~r = ~r(t) of interest. This means that everywhere we make the substitution

~r −→ ~r(t), ~v −→ d~r(t)

dt
.

In particular this is how we get the notation I used originally ~F = ~F (~r(t), ~v(t), t).

Let me introduce one more idea and some terminology. You can see that the left hand

side of “F = ma” can, in general, change in time. Time varying forces are all around

us, so that’s no surprise. But, mathematically, it’s important to notice that the time

dependence arises in two distinct ways. We have ~F = ~F (~r(t), ~v(t), t) where the t appears

via the curve (position and velocity) and as third argument all by itself. The former kind

of time dependence is called implicit while the latter is called explicit. Physically it is not

too hard to see what is going on. Explicit time dependence happens when the force is itself

changing in time, e.g., some mad scientist is turning the knobs and throwing switches. Our

oscillating electric field example above is a good illustration of explicit time dependence

in the force. The force vector changes in time because there is a “t” in the formula for

it. Explicit time dependence is determined by the outside world, independently of the

particle. Implicit time dependence occurs because of two facts: (1) the force depends upon

the particle’s position and/or velocity, (2) the particle position and/or velocity is changing

3



Newton’s Second Law.

in time. For example, in the harmonic oscillator example, the force vector field we use is

the same for all time, there is no explicit time dependence in

~F = −k x î.

But, the force experienced by the body does depend upon time because as the body moves

we have x = x(t) and the force changes with the particles displacement from equilibrium.

For example, a possible motion of the system is

x = cos(ωt), y = 0, z = 0, ω =

√
k

m
,

in which case the force experienced by the particle as it moves is

~F (~r(t)) = −k cos(ωt)̂i.

The equations of motion.

The relationship between the particle’s motion, ~r = ~r(t), and the applied force can be

viewed as a differential equation. Mathematically we view the force as some given function

of position, velocity and time, ~F = ~F (~r,~v, t). Given a curve ~r(t) we evaluate the force on

the curve to get, ~F = ~F (~r(t), ~v(t), t). We equate this to mass times acceleration and we

get the differential equation:

m
d2~r(t)

dt2
− ~F (~r(t),

d~r(t)

dt
, t) = 0.

More precisely, we get (in general) a coupled system of 3 second-order, quasi-linear ordinary

differential equations. These are called, naturally enough, the equations of motion. Usually,

the job of the physicist is to try to figure out as much as possible about the curve ~r = ~r(t)

given the force and the equations of motion. But another very important task would be

to characterize the force given (experimentally determined) curves.

The mathematicians have given us some very important a priori information about

solutions to the equations of motion for any choice of the force. First of all, solutions

always exist (at least for some time interval). Good. Secondly, the solutions are not

unique in general. There are many solutions. This is also good because, given a force field,

we know that infinitely many motions are possible. Finally, the solutions are uniquely

determined by their initial position and initial velocity. This is a strong physical prediction

of Newtonian mechanics, one which is readily born out by experience and experiment.

As an example of equations of motion, let us return to the charged particle moving in

the uniform magnetic field, as described earlier. We get

m
d2x(t)

dt2
− qBdy(t)

dt
= 0
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m
d2y(t)

dt2
+ qB

dx(t)

dt
= 0

m
d2z(t)

dt2
= 0.

In this case, because the magnetic field does not depend upon position the equations are

all linear. Moreover, because the magnetic field does not depend upon time the equations

have constant coefficients. These simplifying features mean we can expect to write down

the curve ~r = ~r(t) which satisfies these equations. Here’s how. . .

First, the last equation for z(t) is decoupled and is easily solved:

z(t) = z0 + vz0t.

The other two equations, which only involve x and y, are solved as follows. First note that

neither of (x, y) appear undifferentiated. So, we make a simple change of variables,

u =
dx

dt
, v =

dy

dt
.

The equations of motion for x and y are now

m
du

dt
− qBv = 0, m

dv

dt
+ qBu = 0.

Differentiate the first equation and substitute in for dv
dt from the second equation to get:

m
d2u

dt2
+ (qB)2u = 0.

This is mathematically just the equation for a harmonic oscillator with mass m and spring

constant k = (qB)2. Introducing the angular frequency

ω =

√
k

m
=
qB

m
,

we have

u(t) = A cos(ωt) +B sin(ωt),

where A and B are constants. With u(t) determined, we can easily determine v(t) from

the equations of motion to be

v(t) =
m

qB

du

dt
= −A sin(ωt) +B cos(ωt).

After all this trickery it is a good idea to confirm that u and v do solve their differential

equations. I’ll leave that to you. We can now go back to the x and y variables. This just

means integrating u and v with respect to time, respectively, and adding in an integration
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constant each time. All we have are cosines and sines, so this is easily done and I will leave

the details to you. The result is readily seen to be of the form:

x(t) = α cos(ωt) + β sin(ωt) + γ

y(t) = β cos(ωt)− α sin(ωt) + δ.

Here α, β, γ, δ are all constants. I think you can see that the motion is helical around an

axis parallel to the z axis. Indeed, we have already seen that motion in z is at constant

speed, and from the above solution for x and y we have

(x(t)− γ)2 + (y(t)− δ)2 = α2 + β2.

Thus the x–y motion is circular, centered about (α, β).

Notice that the solutions we have found are parametrized by 6 constants, which I called

(z0, v
z
0 , α, β, γ, δ) since this number (6) is the same as the number of parameters needed to

specify the initial position and velocity, it won’t surprise you to find that these 6 constants

can be determined by the initial conditions.

Exercise: Express (z0, v
z
0 , α, β, γ, δ) in terms of the initial conditions

The superposition principle.

There is a tacit assumption we make when using Newton’s laws that really should get

a law all its own. I call it the superposition principle. This is just the postulate, already

well-known by you, that when two forces act on a particle, the resulting, net force is just

the vector sum of the two individual force vectors:

~Ftotal = ~F1 + ~F2 + . . .+ ~Fn =
n∑
i=1

~Fi.

I tell you this, first of all, to remind you of this rule. Second of all, I tell you this to

emphasize that it, too, is a part of the laws of Newton and is subject to experimental

verification. It need not be true that forces combine as vectors, or even that forces combine

in a linear fashion. In fact, in some sense the superposition principle is not true. For

example, strong gravitational fields don’t behave this way. Again, for a wide range of

physical situations the superposition principle holds to such good accuracy that we take

it as given.

6


