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1D Wave Equation – General Solution / Gaussian Function 
 
Overview and Motivation:  Last time we derived the partial differential equation 
known as the (one dimensional) wave equation.  Today we look at the general 
solution to that equation.  As a specific example of a localized function that can be 
useful when studying waves, we introduce the Gaussian function. 
 
Key Mathematics:  We reacquaint ourselves with the chain rule (for taking 
derivatives) and look at the Gaussian function and the integral of the Gaussian 
function, which is known as the error function. 
 
I.  Solutions to the Wave Equation  
A.  General Form of the Solution 
Last time we derived the wave equation 
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from the long wave length limit of the coupled oscillator problem.  Recall that 2c  is a 
(constant) parameter that depends upon the underlying physics of whatever system is 
being described by the wave equation.   
 
Now it may surprise you, but the solution to Eq. (1) can, quite generally, be written in 
very succinct form as 
 
 ( ) ( ) ( )ctxgctxftxq −++=, , (2) 
 
where f  and g  are any "well-behaved" functions.  We won't worry about the details 
of what well-behaved means, but certainly we certainly want their second derivatives 
to exist.  As we previously discussed, ( )ctxf +  travels in the x−  direction at the speed 
c  and ( )ctxg −  travels in the x+  direction at the same speed.  To see that Eq. (2) is a 
solution to Eq. (1) let's calculate the second x  and t  derivatives of ( )ctxf +  and 
( )ctxg − .  To do this we need the chain rule, which can be written for the case at hand 

as 
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Applying this rule to ( )ctxf + , for example, we have 
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where ( )ctxf +′  is the derivative of ( )ctxf +  with respect to its argument.  Applying 
the chain rule again to calculate the second derivative of ( )ctxf +  with respect to x  
give us 
 

 ( ) ( ) ( ) ( ) ( )ctxf
x
ctxctxf

x
ctxf

x
ctxf

+′′=
∂
+∂

+′′=
∂
+′∂

=
∂

+∂
2

2

. (5) 

 
Similarly, we have for the t  derivatives 
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and 
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From Eqs. (5) and (7) we see that 
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and so ( )ctxf +  indeed solves the wave equation.  Proof that ( )ctxg −  also satisfies Eq. 
(1) follows from an essentially identical calculation. 
 
B.  More Specific Solutions 
So the (totally unknown) functions ( )ctxf +  and ( )ctxg −  are solutions, but only in a 
very general sense.  As we shall see, any solution has the form of Eq. (2), but how do 
we know what the solution will be in any given situation?  Well, as with earlier 
problems that we have looked at in this class, the situation can be specified by initial 
conditions and the boundary conditions.  Recall, for the coupled oscillator problem 
the initial conditions were specified by values for ( )0jq  and ( )0jq& .  Now, however, the 
spatial variable is not the discrete index j  but the continuous variable x .  The 
corresponding initial conditions can thus be written as 
 
 ( ) ( )xaxq =0,  (9a) 
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and 
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where ( )xa  and ( )xb  are assumed to be known functions.  We could have just stuck 

with ( )0,xq  and ( )0,x
t
q
∂
∂ , but in the long run we save a bit of notational 

cumbersomeness by using ( )xa  and ( )xb  instead.  For the coupled-oscillator system 
the boundary conditions are ( ) 00 =tq  and ( ) 01 =+ tqN .  There will be similar instances 
for the wave equation where we will be interested in waves on a finite sized system.  
In such cases we will need to specify the condition on ( )txq ,  at the system boundaries.  
Indeed, you have already seen an example of this in Exercise 7.4 from the last lecture 
notes.   
 
II.  Initial Value Problem (IVP) for an Infinite System 
Here we write the most general solution to the wave equation, given the initial 
conditions ( )xa  and ( )xb .  To keep things simple at this point we will assume that the 
ends of the (1D) system where these waves exist are at ∞−  and ∞+ .  In this way we 
do not have to deal with any boundary conditions.  (We will deal with bc's in the next 
lecture!)  From Eq. (2) 
 
 ( ) ( ) ( )ctxgctxftxq −++=, , (2) 
 
we have for 0=t  
 
 ( ) ( ) ( )xgxfxa += . (10) 
 
That is simple enough.  What about the other initial condition.  Well, taking the t  
derivative of Eq. (2) and setting it equal to ( )xb  at 0=t  gives us 
 
 ( ) ( ) ( )[ ]xgxfcxb ′−′= . (11) 
 
Now Eq. (11) can be formally integrated, which gives us 
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where 0x  can have any (constant) value.  If we now take the sum and difference of 
Eqs. (10) and (12) we obtain 
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Using Eq. (13) in Eq. (2) finally gives us the general solution to the initial-value 
problem 
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Notice that the undetermined constant 0x  has disappeared.  Eq. (14) is remarkably 
simple.   
 
II.  The Gaussian Function and Two Initial-Value-Problem Examples 
A.  Gaussian Function 
A very useful function in physics is the Gaussian, which is defined as 
 
 ( ) 22 σ

σ
xexG −= . (15) 

 
As shown in the picture on the top of the following page, the Gaussian is peaked at 

0=x  and has a width that is proportional to the parameter σ .  In fact, the full width 
at half maximum (FWHM), which is the width of the peak at half its maximum 
height, is equal to ( )σ2ln2  ≈ σ665.1 .   
 
B.  IVP Solution with Gaussian Initial Position 
Let's see what the solution ( )txq ,  looks like with the initial conditions ( ) ( )xGAxa σ= , 
( A  is just some arbitrary amplitude) and ( ) 0=xb .  (Physically, how would you describe 
this set of initial conditions?)  Using Eq. (14) we rather trivially obtain 
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 ( ) ( ) ( )[ ]ctxGctxGAtxq −++= σσ2
, , (16) 

 
or more explicitly, 

 

 ( ) ( ) ( )[ ]22

2
, σσ ctxctx eeAtxq −−+− += , (17) 

 
So the solution consists of two Gaussian functions, one moving in the x−  direction 
and one in the x+  direction, both at the speed c .  The amplitude of each function is 
½ the amplitude of the initial Gaussian displacement.  The following picture illustrates 
this solution as a function of x  for several times t .  For simplicity we have set 1=A , 

1=σ , and 1=c .   
 

10 5 0 5 10
0

0.5

1
t = 0
t = 1
t = 3
t = 6

t = 0
t = 1
t = 3
t = 6

SOLUTION FOR INITIAL GAUSS. DISPLACEMENT

x

q(
x,

t)

10 5 0 5 10
0

0.5

1
sigma = 1
sigma = 3
sigma = 5

sigma = 1
sigma = 3
sigma = 5

GAUSSIAN FUNCTIONS

x

G
(x

)



Lecture 8 
  Phys 3750 

D M Riffe -6- 1/24/2013 

B.  IVP Solution with Gaussian Initial Velocity / Error Function 
Let's look at another example using the Gaussian function.  This time let's have the 
initial displacement of the system be zero so that ( ) 0=xa , but let's have a Gaussian 
initial-velocity function so that ( ) ( )xGBxb σ= , where B  is some arbitrary velocity 
amplitude.  In this case we get from Eq. (14) 
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So what is the integral of a Gaussian function?  Well, it is known as the error function.  
Specifically, the error function is defined as 
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The following figure shows a plot of ( )xerf  vs x .  As the graph indicates, ( )xerf  is 
defined such that ( ) 1−=−∞→xerf , ( ) 1=∞→xerf , and ( ) 00 =erf . 
 

All this is fine and well, but what do we do about the σ  in Eq. (18), which does not 
appear in Eq. (19)?  We must do a little math (!) and change variables in Eq. (18).  
Let's define a new integration variable σxy ′= , σxddy ′= .  Then Eq. (18) becomes 
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We can now use Eq. (19), the definition of the error function, to write 
 

 ( ) ( )[ ] ( )[ ]{ }σσσπ ctxerfctxerf
c
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4
, . (21) 

 
Notice that again we have the sum of two functions, each traveling in opposite 
directions at the speed c .   The following picture plots the solution vs x  for several 
values of t  (with B , σ , and c  all set to 1).   
 
 

 
Exercises 
 
*8.1  The chain rule.  Let ( ) 22, yxyxyxh ++= . 
(a)  Directly calculate xh ∂∂  and yh ∂∂ .   
(b)  Now define two new independent variables ( ) 2yxu +=  and ( ) 2yxu −=  
(c)   Rewrite ( )yxh ,  in terms of u  and v .  That is, find ( )vuh , .1 
(d)  Now starting with ( )vuh ,  and thinking of it as ( ) ( )( )txvtxuh ,,, , calculate xh ∂∂  

using the chain rule.  That is, calculate this derivative using 
x
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this agree with your answer in (a)? 
(e)  Follow a procedure analogous to that in (d) to calculate yh ∂∂ .  Again, does this 
agree with your answer in (a)? 
 

                                                 
1 Technically speaking, we should give the function ( )vuh ,  another name [ ( )vuh , , say ], but being 
physicists, we are rather lazy and typically still call the new function h .   
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*8.2  Verify for 0=t  that Eq. (14) and its time derivative reduce to the initial 

conditions ( ) ( )xaxq =0,  and ( ) ( )xbx
t
q

=
∂
∂ 0, , respectively.   

 
*8.3  If the initial displacement is zero, then Eq. (14), the solution to the initial value 

problem, can be written as ( ) ( )∫
+
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2
1, . By calculating second derivatives in x  

and t , directly demonstrate that this function solves Eq. (1), the wave equation.   
 
**8.4  The error function.   
(a)  Using an appropriate change of integration variable in the equation 
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(b)  Using a computer mathematic package, plot ( )σxerf  over an appropriate range 
of x  for σ  = 1, 3, and 5.   
 
**8.5  The initial value problem. 
Consider Eq. (14), the general solution to the initial value problem. 
(a)  Explain why Eq. (14)  in not a function of the variable x′ .  (This is a basic feature 
of the definite integral.  Consult a calculus book if necessary.)   
(b)  What are c , ( )xa , and ( )xb  in Eq. (14)? 
(c)  Consider the specific case where ( ) 0=xa  and ( ) ( )412 xcxxb += .  Using a 
computer mathematics package and letting 1=c , plot ( )xb  over an appropriate range 
of x . 
(d)  Using the initial conditions given in (c), solve Eq. (14). (Do not set c  to zero!) 
The integral can be done either with a change of variable, a computer mathematics 
package, or can be looked up in a table of integrals (such as found in the CRC 
Handbook of Chemistry and Physics).   
(e)  Show that your solution can be written in the form ( ) ( ) ( )ctxgctxftxq −++=, .  
Thus identify ( )xf  and ( )xg .   
(f)  Again, using a computer mathematics package and letting 1=c , plot ( )txq ,  as a 
function of x  for t  = 0, 10, 20, and 30.  Be careful to let your graph include all 
interesting parts of the solution! 
 


