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Normal Mode Coordinates / Initial Value Problem 
 
Overview and Motivation:  We continue to look at the coupled-oscillator problem.  
We extend our analysis of this problem by introducing functions known as normal-
mode coordinates. These coordinates make the coupled-oscillator problem simple 
because they transform the coupled equations of motion into two uncoupled 
equations of motion. Using the normal modes, we then solve the general initial-value 
problem for this system. 
 
Key Mathematics:  We gain experience with linear transformations and initial value 
problems. 
 
I. Normal Mode Solutions 
A.  Summary from Last Lecture 
The problem that we studied last time is shown in the following diagram.  There are 
two objects, each with mass m  and three springs.  The springs on the ends have 
spring constant sk  and the one in the center has spring constant sk ′ . 
 
 

 
 
Last time we found the two normal-mode solutions, which can be written as 
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where  ω~1 =Ω  and  22

2
~2~ ωω ′+=Ω  are the normal-mode frequencies of oscillation.  

As we will show below, any solution to this problem can be written as a linear 
combination of these two normal modes.  Thus, we can write the most general 
solution to this problem as 
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B.  Normal Mode Coordinates 
Let's now consider the following linear transformation1 of the displacements ( )tq1  
and ( )tq2 , 
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Calculating the rhs of Eq. (4) produces2 
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Written more pedantically, we have 
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For reasons that will soon become apparent, the functions ( )tQ1  and ( )tQ2 are known 
                                                 
1 Any linear transformation of an N -vector can be represented as lhs multiplication of that vector by an 

NN ×  matrix.   
2 Note that the normal-mode coordinate 2Q  as defined here is the negative of 2Q  as defined in Dr. Torre’s 
text FWP.  We define it here with this change so as to be more consistent with the later treatment of N  
coupled oscillators.  To be honest, it also makes some of the equations look prettier! 
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as normal-mode coordinates.  (Why aren't they called normal-mode functions?  
Don't ask me!)   
 
Let's now apply the linear transformation in Eq. (4) to the rhs of Eq. (3) and see what 
it tells us.  Applying the transformation and equating the result to the lhs of Eq. (4) 
yields 
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This equation may look complicated, but, in fact, it is very simple. It says that ( )tQ1  
harmonically oscillates at the first normal-mode frequency 1Ω  and that ( )tQ2  
harmonically oscillates at the second normal-mode frequency 2Ω .  Pretty cool!  In fact, 
if Eq. (3) is the general solution to this problem (more on this below), Eq. (7) say that 
no matter what the motion, the sum ( ) ( )tqtq 21 +  always oscillates at 1Ω , and the 
difference ( ) ( )tqtq 21 −  always oscillates at 2Ω . 
 
C.  Equations of Motion 
Let's now go back to the coupled equations of motion, 
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and see what happens if we write them in terms of the normal-mode coordinates 

( )tQ1  and ( )tQ2 .  To do that we need the inverse of the transformation in Eq. (4).  
Using 
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(make sure that you understand this!) we apply this inverse transformation to Eq. (4), 
which gives us (after switching the rhs and lhs) 
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That is, ( ) ( ) ( )tQtQtq 211 +=  and ( ) ( ) ( )tQtQtq 212 −= .  Substituting these results into Eq. 
(8) produces 
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and 
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Looks pretty ugly, eh? Well , it is about to get much simpler. If we take the sum and 
difference of Eqs. (11a) and (11b) we get the following two equations, 
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First, notice that these two equations are uncoupled:  the equation of motion for 1Q  
doesn't depend upon 2Q  and vice-versa.  Furthermore, you should now able to 
recognize each of these equations as the equation of motion for a single harmonic 
oscillator!  Thus, Eq. (12a) tells us that 1Q  harmonically oscillates at ω~  ( 1Ω= ), and Eq. 
(12b) tells us that 2Q  harmonically oscillates at 22 ~2~ ωω ′+  ( 2Ω= ).  Of course, this is 
exactly what was expressed earlier by Eq. (7). 
 
We can also infer something very important from this transformation.  Because the 
normal coordinates are governed by Eq. (12), which is simply an harmonic oscillator 
equation for each coordinate, we know that the general solution for ( )tQ1 and ( )tQ2  is 
given by Eq. (7).  Thus, the general solution for ( )tq1 and ( )tq2  is given by the inverse 
transformation of Eq. (7), which is simply Eq. (3).  This proves that the general 
solution for ( )tq1 and ( )tq2  is, indeed, a linear combination of the normal mode 
coordinates ( )tQ1 and ( )tQ2 .  This is a general result that we will use throughout the 
course. 
 
II.  Initial Value Problem 
Let's now solve the initial-value problem for the coupled-oscillator system.  That is, 
we want to write Eq. (3), the general solution to the coupled oscillator problem, in 
terms of the initial conditions ( )01q , ( )01q& , ( )02q , and ( )02q&  (which are all real 
quantities). 
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Now Eq. (3), 
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uses the complex form of the harmonic oscillator solution.  Looking back on p. 8 of 
the Lecture 2 notes, we see that we have three choices about how to deal with making 
the IVP solution real.  Let's use the first approach and make Eq. (3) manifestly real by 
setting *

11 AB =  and *
22 AB = .  Then we have 
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This expression is real because each term in parenthesis is the sum of a complex 
number and its complex conjugate.  To rewrite Eq. (13) in a form that is explicitly real 
we use the relationship 
 
 ( ) ( ) ( ) ( ) ( )[ ]xAxAAeeAAe ixixix sinImcosRe2Re2* −==+ − , (14) 
 
so that Eq. (13) becomes 
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We now apply the initial conditions to Eq. (15), which gives us 
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and 
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The easiest way to solve for the four unknowns [ ( )ARe , ( )AIm , ( )CRe , and ( )CIm ] is 

to apply the normal-mode transformation 
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equations, which produces 
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and 
 

 ( ) ( )
( ) ( ) ( ) ( )2211

21

21 Im
1
0

2Im
0
1

2
00
00

2
1 AA

qq
qq









Ω−








Ω−=








−
+
&&

&&
. (19) 

 
From these last two equations we immediately see that 
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If we now substitute Eq. (20) into Eq. (15) we finally obtain the solution to the IVP, 
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The graphs on the following page illustrate the motion that results for two sets of 
initial conditions.  For both graphs 1=m , 1=sk , and 1=′sk  (so that 11 =Ω  and 

32 =Ω ).  In the top graph ( ) 101 =q , ( ) 102 −=q , ( ) 001 =q& , and ( ) 002 =q& .  What special 
motion is this?  In the second graph the initial conditions are ( ) 101 =q , ( ) 002 =q , 
( ) 001 =q& , and ( ) 002 =q& .  This motion is quite complicated.  In fact, it is not even 

periodic:  it never repeats, even though the normal-mode coordinates are simply 
harmonically oscillating at their respective frequencies.  The nonrepetitive nature of 
the motion occurs because (in this example) the ratio is of the two normal-mode 
frequencies is not a rational number.   
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Exercises 

*4.1  Apply  the inverse transformation 







−11
11  to Eq. (7) to recover Eq. (3). 

 
*4.2  Assuming ( ) 001 =q  and ( ) 002 =q , find the general condition on the initial 
velocities ( )01q&  and ( )02q&  that results in only the first normal mode being excited.   
 
*4.3  Assuming ( ) 001 =q  and ( ) 002 =q , find the general condition on the initial 
velocities ( )01q&  and ( )02q&  that results in only the second normal mode being excited.   
 
**4.4  The general solution to the two-coupled oscillator problem can alternatively be 
expressed in terms of real quantities as 
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Starting with this form of the general solution find the (real) parameters A , B , C , and 
D in terms of the initial conditions ( )01q , ( )01q& , ( )02q , and ( )02q& .  Check to see that 
your solution agrees with Eq. (21).   
 
*4.5  Use Euler’s relation to derive Eq. (14). 
 


