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A Propagating Wave Packet – The Group Velocity 
 
Overview and Motivation:  Last time we looked at a solution to the Schrödinger 
equation (SE) with an initial condition ( )0,xψ  that corresponds to a particle initially 
localized near the origin. We saw that ( )tx,ψ  broadens as a function of time, 
indicating that the particle becomes more delocalized with time, but with an average  
position that remains at the origin.  To extend that discussion of a localized wave 
(packet) here we look at a propagating wave packet.  The two key things that we will 
discuss are the velocity of the wave packet (this lecture) and its spreading as a function 
of time (next lecture).  As we shall see, both of these quantities are intimately related 
to the dispersion relation ( )kω .  This discussion has applications whenever we have 
localized, propagating waves, including solutions to the SE and the wave equation 
(WE).   
 
Key Mathematics:  Taylor series expansion of the dispersion relation ( )kω  will be 
central in understanding how the dispersion relation is related to the properties of a 
propagating wave packet.  The Fourier transform is again key because the localized 
wave packet will be described as a linear combination of harmonic waves.    
 
I.  A Propagating Schrödinger-Equation Wave Packet 
In the last lecture we found the formal solution to the initial value problem for the 
free particle SE, which can be written as 
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∞

∞−

−= tkxkiekCdktx ω

π
ψ

2
1, , (1) 

 
where the coefficients ( )kC  are the Fourier transform of the initial condition ( )0,xψ , 
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and the dispersion relation (for the SE) is given by 
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The example that we previously considered was for the initial condition  
 
 ( ) 22

00, σψψ xex −= . (4) 
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We saw that for increasing positive time ( )tx,ψ  becomes broader (vs x ), but its 
average position remains at the origin.  So, on average the particle is motionless, but 
there is increasing probability that it will be found further away from the origin as t  
increases.   
 
So you might ask, what initial condition would describe a particle initially localized at 
the origin, but propagating with some average velocity?  Well, here is one answer: 
 
 ( ) 22

0
00, σψψ xxik eex −= . (5) 

 
As will be demonstrated below, you may think of 0k  as some average wave vector (or 
momentum 0kh  through deBroglie's relation kp h= ) associated with the state ( )tx,ψ .   
 
As we did in the last lecture, let's find an expression for ( )tx,ψ .  We start by using Eq. 
(2) to calculate ( )kC , so we have 
 

 ( ) ( )∫
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−−−= xkkix eedxkC 0
22
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0 σ

π
ψ . (6) 

 
This almost looks like the Fourier transform of a Gaussian, which we can calculate.1  
Indeed, we can make it be the Fourier transform of a Gaussian if define the variable 

0kkk −=′ , so that the rhs of Eq. (6) becomes 
 

 ∫
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∞−

′−− xkix eedx
22

2
0 σ

π
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This equals the Gaussian (in the variable k ′ ) 
 

 40 22

2
σσψ ke ′− , (8) 

 
and now reusing the relation 0kkk −=′  we can write 
 

 ( ) ( ) 40 22
0

2
σσψ kkekC −−= . (9) 

                                                 
1 As we stated in the last lecture, the Fourier transform of the Gaussian 22 σxe−  is another Gaussian 

4
2

22σσ ke− . 
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Note that if 00 =k , then we obtain ( ) ( ) 4
0

22

2 σσψ kekC −= , the result from the last 
lecture. 
 
Equation (9) tells us several important things.  Recall that we are describing the state 
( )tx,ψ  as a linear combination of normal-mode traveling-wave states ( )[ ]tkxkie ω− , each 

of which is characterized by the wavevector k λπ2=  and phase velocity  
mkkkvph 2)( h== ω .  As Eq. (1) indicates, the function ( )kC  is the amplitude (or 

coefficient) associated with the state with wavevector k .  As Eq. (9) indicates, the 
coefficients ( )kC  are described by a Gaussian centered at the wave vector 0k .  Thus, 
you may think of the state ( )tx,ψ  as being characterized by an average wave vector 0k .  
The width of the function ( )kC , with width parameter σ2 , is also key to describing 
the state ( )tx,ψ .  Because this width parameter is inversely proportional to the 
localization (characterized by σ ) of the initial wave function ( )0,xψ , we see that a 
more localized wave function ( )0,xψ  requires a broader distribution (characterized by 
σ2 ) of (normal-mode) states in order to describe it.  Insofar as momentum is equal 

to kh , this inverse relationship between the widths of ( )0,xψ  and ( )kC  is the essence 
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of the uncertainty principle. We shall discuss this in great detail in Lecture 29.   
 
Let’s now look at the time dependence of ( )tx,ψ .  With Eq. (9) we can now use Eq. (1) 
to write 
 

 ( ) ( ) ( )[ ]∫
∞

∞−

−−−= tkxkikk eedktx ωσ

π
σψψ 40 22

0

2
, , (10) 

 
keeping in mind that the dispersion relation ( )kω  is given by Eq. (3).  This looks 
complicated, so let's look at some graphs of ( )tx,ψ  to see what is going on with this 
solution.  The preceding figure, which contains snapshots of the video SE Wavepacket 
3.avi,  illustrates ( )tx,ψ  as a function of time (for a positive value of 0k ).  Notice that 
the wave packet moves in the x+  direction with a constant velocity.  Notice also that 
( )tx,ψ  is not simply a translation in time of the function ( )0,xψ .  That is, the solution is 

not of the form ( )vtxg − , where v  is some velocity.  This can be seen in the video by 
noticing that the center of the wave packet travels faster than any of the individual 
oscillation peaks.   
 
II.  The Group Velocity 
We now want to determine the velocity of the propagating wave packet described by 
Eq. (10).  Because this solution ( )tx,ψ  can be thought of as having an average wave 
vector 0k , you might guess that the velocity is simply the phase velocity ( ) kkvph ω=  
evaluated at the average wave vector 0k .  That is, you might think that the packet's 
velocity is simply the velocity of the normal-mode traveling-wave solution  
 
 ( ) ( )[ ] ( )[ ]tkxiktkxki

k eetx 0000

0 00, ωω ψψψ −− == , (11) 
 
which propagates in the x+  direction at the phase velocity ( ) mkkkvph 2000 h==ω .  
However, this is not correct!   
 
To figure out the packet's velocity we must carefully analyze the propagating-pulse 
solution described by Eq. (10).  This solution lends itself to some approximation 
because part of the integrand, ( ) 422

0 σkke −− , is peaked at 0kk = , and for values of 
σ20 >>− kk  this part of the integrand is nearly zero.  The importance of this is that 

we only need to know what ( )kω  is for 0kk −  less than a few times the width 
parameter σ2 .  That is, we only need to know what ( )kω  is for values of k  close to 

0k .  If ( )kω  is does not vary too much for these values of k , then it makes sense to 
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approximate ( )kω  by the first few terms of a Taylor series expansion about the point 
0k .  So we write 

 

 ( ) ( ) ( )( ) ( )( ) ...
2
1 2

00000 +−′′+−′+= kkkkkkkk ωωωω  (12) 

 
If we now approximate ( )kω  in Eq. (10) by the first two terms of the series, 
( ) ( ) ( )( )000 kkkkk −′+≈ ωωω , then we obtain 

 

 ( ) ( ) ( )[ ] ( ) ( )[ ]∫
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This looks rather messy, but the integral can be calculated exactly to yield 
 
 ( ) ( )[ ]{ } ( )[ ] 22

0000
0, σωωψψ tkxtkkxik eetx ′−−−≈ . (14) 

 
We can now easily see what is going on.  This (approximate) solution is the product of 
the normal-mode traveling wave solution ( ) ( )[ ]{ }tkkxik

k etx 000

0 0, ωψψ −=  (at the wave vector 

0k ), which travels at a speed equal to the phase velocity  
 

 ( ) ( )
k
kkvph

ω
=  (15) 

 
(evaluated at 0k ) and a Gaussian "envelope" function ( )[ ] 22

0 σω tkxe ′−− , which travels at a 
speed equal to ( )0kω′ .  The derivative ( )kω′  is known as the group velocity 
 

 ( ) ( )
dk
kdkvgr

ω
=  (16) 

 
and so the envelope function, which describes the position of the packet, travels at 
the group velocity (evaluated at 0kk = ).  Note that the group and phase velocities are 
not necessarily equal.  The group velocity is typically more important than the phase 
velocity because the average position of the particle is given by the peak of the 
envelope function.   
 
With these definitions of phase and group velocities we can now write Eq. (14) as 
 
 ( ) ( ) ( ) 22

0
0, xgrph atvxtvxik eetx −−−≈ψψ , (17) 
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where both phv  and grv  are evaluated at the wave vector 0k .   
 
III.  Application to the Schrödinger Equation 
You may have noticed that nothing in the last section was necessarily directly related 
to the SE.  That is, Eq. (17) can be applied to any situation where general solutions to 
the problem at hand can be described as a linear combination of harmonic, traveling-
wave solutions that have a dispersion relation ( )kω .  The SE happens to be one of 
those situations;  so let's apply the results of the last section to the SE.  We simply 
need to know that for the SE the dispersion relation is 
 

 ( )
m
kk

2

2h
=ω . (18) 

 

From Eq. (18) we obtain the phase  and the group velocities ( ) mkkvph 200 h=  and 
( ) mkkvgr 00 h= , respectively.  Notice that the group velocity is twice the phase velocity.   

This explains the behavior of the pulse in the video, where the center of the pulse 
(which travels at grv ) travels faster than any of the oscillation peaks (which travel at 
phv ).  With the interpretation that Eq. (10) describes a particle with an average 

momentum 00 kp h= , we see that the group velocity corresponds to the result for a 
classical, nonrelativistic particle mpvgr 0= .   
 
IV.  Application to the Wave Equation 
We can also apply the results of Sec. II to the wave equation.  Because harmonic 
traveling waves can also be used as basis functions for solutions to the WE (see 
Lecture notes 21), we can also create a wave-packet solution to the WE of the form of 
Eq. (17).  Again , we simply need to know the dispersion relation 
 
 ( ) ckk =ω  (19) 
 
in order to calculate the phase and group velocities, which are thus 

( ) ( ) ckkkvph == 000 ω  and ( ) ( ) ckkvgr =′= 00 ω , respectively.  So in this case the two 
velocities are equal!  Then the solution given by Eq. (17) becomes 
 
 ( ) ( ) ( ) 22

0

0 0, xatcxtcxik
k eetx −−−=ψψ . (20) 

 
Notice that Eq. (20) is a function of ctx − , and as such is an exact solution to the wave 
equation, rather than an approximate solution (as it is for the SE).  (Why is that?)  The 



Lecture 27 
  Phys 3750 

D M Riffe -7- 4/3/2013 

figure on the preceding page shows snapshots of the video WE Wavepacket 1.avi.  In 
contrast to the SE solution both the center of the wave packet and the oscillation 
peaks travel at the same velocity, consistent with the solution being a function of 

ctx − .   

 
 
Exercises 
 
*27.1  Show that Eq. (13) follows from Eq. (10) with the linear Taylor's-series 
approximation described in the notes. 
 
*27.2  Equation (12) is the Taylor's-series expansion of the dispersion relation about 
the point 0kk = .  For the dispersion relation appropriate to the WE, find all terms in 
this expansion.  Then argue why Eq. (20), is an exact solution to the WE. 
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**27.3  SE Approximate Solution 
(a)  Calculate the integral on the rhs of Eq. (13) and show that Eq. (13) simplifies to 
Eq. (14).  (Hint:  Transform the integral to be the Fourier transform of a Gaussian, 
and then use the fact that the Fourier transform of 22 σxe−  is 4

2

22σσ ke− .) 
(b)  Show that Eq. (14) consistent with Eq. (5), the initial condition. 
 
*27.4  EM Waves  For electromagnetic waves traveling in a dielectric material such as 
glass the dispersion relation is ( ) ( )knck =ω , where n  is the index of refraction, which 
is often assumed to be a constant. 
(a)  If n  is indeed a constant, calculate the phase and group velocities for these waves. 
(b)  Often, however, the index of refraction depends upon the wave vector k .  
Assuming that ( ) knnkn 10 += , find the phase and group velocities.   
(c)  For ( )kn  given in (b) show that ( )[ ]knnknvv phgr 1011 +−= .   
 
*27.5  Calculate ψψ *  for the approximate wave function given by Eq. (17) and show 
that ψψ *  travels at the group velocity grv .   


