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Spherical Coordinates II / A Boundary Value Problem /  
Separation of Variables Summary  

 
Overview and Motivation:  We look at the fourth differential equation that arises in 
the separable solution to the spherical-coordinates wave equation.  We then review 
the separable solutions in all three coordinate systems – Cartesian, cylindrical, and 
spherical.  Finally, we use a separable solution to find the normal modes of a 
drumhead. 
 
Key Mathematics:  More separation of variables, spherical Bessel functions, and 
normal modes in polar coordinates. 
 
I.  Separation of Variables in Spherical Coordinates (continued) 
Last time we began our search for separable solutions to the wave equation in 
spherical coordinates, 
 

 ( ) ( ) ( ) 2

2

222
2

22

2

2 sin
1sin

sin
111

φθθ
θ

θθ ∂
∂

+





∂
∂

∂
∂

+







∂
∂

∂
∂

=
∂
∂ q

r
q

rr
qr

rrt
q

c
. (1) 

 
We assumed a solution of the form ( ) ( ) ( ) ( ) ( )tTrRtrq φθφθ ΦΘ=,,,  and then solved 
three ordinary differential equations, which gave us the three functions ( )tT , ( )φΦ , 
and ( )θΘ .  Because each of these differential equations is second-order, linear, and 
homogeneous, there are two linearly independent solutions that can be (linearly) 
combined to produce the most general form of each solution.  For the functions ( )tT , 
( )φΦ , and ( )θΘ  the most general forms can be written as 
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Here kA , mC , and mlF , , etc. are undetermined constants, and m

lP  and m
lQ  are 

associated Legendre functions of the first and second kind, respectively.   
 
Let's now look at the ( )rR  part of ( )trq ,,, φθ .  Looking back at p. 4 of the Lecture 22 
notes we see that the ordinary differential equation for ( )rR  is 
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which can be rewritten as   
 
 ( )[ ] 012 222 =+−+′+′′ RllrkRrRr . (6) 
 
As with some of the other equations that we have looked at, this not quite in standard 
form.  Equation (6) can be put in standard form (in a manner similar to the Bessel 
equation that arose in cylindrical coordinates) by defining the new independent 
variable krs = .  With this definition (and the chain rule) Eq. (6) can be transformed 
into  
 
 ( ) ( ) ( )[ ] ( ) 012 22 =+−+′+′′ sRllssRssRs , (7) 
 
where we emphasize that R  is now a function of the new variable s .  If you look back 
at Eq. (21) of the Lecture 21 notes (Bessel's equation), you will see that Eq. (7) is quite 
similar to that equation. 
 
The solutions to Eq. (7) (which are indeed similar to Bessel functions) are known as 
spherical Bessel functions.  The spherical Bessel functions of the first and second 
kind are denoted ( )sjl  and ( )syl .  The following figure plots these functions (for 

3,2,1,0=l ). 
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The following facts about these functions, some of which can be discerned from the 
graphs, are worth noting. 
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(i)  ( )sjl  are finite everywhere; ( )syl  diverge as 0→s .  Also notice the behavior of 
these functions as 0→s  for increasing l :  the functions ( )sjl  converge more rapidly 
while the functions ( )syl  diverge more rapidly.   
 
(ii)  The functions oscillate with decreasing amplitude as ∞→s . 
 
(iii)  The spherical Bessel functions can be written in terms of (standard) Bessel 
functions of noninteger order as 
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(iv)  The ( )sjl  functions have the convenient integral representation1 
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(v)  The first three ( )sjl 's and ( )syl 's can be represented in terms of sine and cosine 
functions as 
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Similar, although increasingly more complicated, formulae can be derived for higher-
order ( )sjl 's and ( )syl 's.  Notice that the formulae for ( )syl  are identical to the 
formula for ( )sjl  with the changes ( ) ( )ss cossin −→  and ( ) ( )ss sincos → .   
 
Let's now get back to our solution to the wave equation.  Because krs = , the solution 
to Eq. (6) [the equation for ( )rR ], can be generally written as 
 

                                                 
1 At least Eq. (9) can be convenient when using a computer mathematic program such as Mathcad.  In fact, 
you can use Eq. (9) and Mathcad to generate the formulae for ( )sjl  in Eq. (10). 
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 ( ) ( ) ( )kryHkrjGrR llkllklk ,,, += . (11) 
 
So putting Eqs. (2), (3), (4), and (11) together we now have the general form of the 
separable solution in spherical coordinates 
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where the parameters l  and m  are specified by K,2,1,0=l  and lm K,2,1,0= .  The 
parameter k  is unspecified.   
 
II.  Summary of Separable Solutions 
We previously wrote down separable solutions in the other coordinate systems, but 
never in as general a form as Eq. (12) for spherical coordinates.  Let's now do this for 
the previous coordinate systems.   For cylindrical coordinates we can write the general 
separable solution as 
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where nJ  and nY  are Bessel functions.  The parameter n  is specified by K,2,1,0=n , 
but the parameters a  and k  are unspecified.  Similarly, for Cartesian coordinates we 
have2 
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In this equation none of the parameters xk , yk , or zk  are specified.   
 
Some general remarks concerning Eqs. (12) – (14) are in order.  First, notice that all 
three solutions depend upon three parameters, which are (essentially) the three 
independent separation constants that arise in the separation-of-variables process.  
Second, the discrete parameters ( ml,  in spherical coordinates, n  in cylindrical 
coordinates) are discrete because of mathematical considerations related to the 
coordinate system being used.  The other parameters ( k  in spherical coordinates, ak,  

                                                 
2 You have seen an almost general form for Cartesian coordinates in Exercise 19.2. 
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in cylindrical coordinates, zyx kkk ,,  in Cartesian coordinates) can take on any values 
and the solutions will still satisfy the wave equation.   
 
For a given problem, the physics of the situation may dictate that these parameters 
take on only certain values.  For example, in Exercise 19.2, where you found the 
normal-mode standing waves in a rectangular room, you found that because of the 
boundary conditions the parameters xk , yk , and zk  could only take on the values 
 

 
x

x
x L

n
k

π
= ,        

y

y
y L
n

k
π

= ,       
z

z
z L
nk π

= , (15a) – (15c) 

 
where the in 's are integers and the iL 's are the dimensions of the room.  Physical 
considerations, such as boundary conditions, may also place constraints on the 
multiplicative factors that appear in Eqs. (12) – (14). 
 
III.  A Vibrating Circular Drumhead  
Let's look at another example where physics constrains some of these unspecified 
parameters.  In particular, let's find the normal modes of vibration of a circular 
drumhead.  First, we must recognize that this is a two dimensional, rather than a three 
dimensional problem.  If we were working in Cartesian coordinates we would only 
need x  and y, but because we are interested in a circular drumhead we should 
recognize that it might be better to work in polar coordinates (with the origin at the 
center of the drum head).  Well, if we were to write the 2D wave equation in polar 
coordinates and do separation of variables, the solutions would be the same as the 

22 ak =  solutions for cylindrical coordinates in Eq. (13).  That is, the solutions would 
be 
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Let's now apply some physics.  First we know that we want the displacement q  to be 
everywhere finite.  So because the functions ( )sYn  diverge for 0→s  we must have 

0, =anH .  Also, we want the displacement to be a real quantity.  With that in mind we 
explicitly write the φ  and t  parts of Eq. (16) in terms of sine and cosine functions, 
rather then the complex exponential functions.3  We then have 
 
 ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]actBactAnFnEaJGtq aannnanan sin~cos~sin~cos~,, ,, ++= φφρφρ , (17) 
 
                                                 
3 There are, of course, other ways to make sure that the solution is real.  See the discussion on p. 8 of the 
Lecture 2 notes. 
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where the quantities with tildes in Eq. (17) are real multiplicative factors [that can be 
related to the quantities without tildes in Eq. (16), if necessary].   
 
There is now one more bit of physics to consider:  the boundary condition at the edge 
of the drum head.  For simplicity, we assume that this bc is ( ) 0,,0, =tq an φρ , where 0ρ , 
is the radius of the drumhead.   Applying this bc to Eq. (17) then gives us 
 
 ( ) ( ) ( )[ ] ( ) ( )[ ]actBactAnFnEaJG aannnan sin~cos~sin~cos~0 0, ++= φφρ . (18) 
 
So how can Eq. (18) be satisfied?  The only nontrivial way is to require that a  be such 
that ( ) 00 =ρaJn .  Now, each Bessel function nJ  has an infinite number of discrete 
zeros (see the figure on p. 5 of Lecture 27 notes) so that there are an infinite number 
of discrete values of a  (which are different for each n ) that will satisfy Eq. (18).  
Unfortunately, in contrast to the Cartesian coordinate example specified by Eq. (15), 
there are no nice, simple formulae for the zeros of the Bessel functions.  Nonetheless, 
the zeros can be found numerically.   
 
A. 0=n  Normal Modes 
We first look at normal mode solutions specified by 0=n .  For these solutions the 
Bessel function ( )sJ0  comes into play.  The zeros of this function are equal to 2.405, 
5.520, 8.654, 11.791, …4  Thus, the bc will be satisfied for 
 

                                                 
4 The zeros are tabulated in Handbook of Mathematical Functions by Abramowitz and Stegun (where else?). 
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 =0ρa 2.405, 5.520, 8.654, 11.791, … (20) 
 
This is illustrated in the graph on the previous page, where we have set 100 =ρ .  
Notice that ( )ρaJ 0  is indeed equal to zero at 0ρρ =  for each value of a  given by Eq. 
(20).   
 
Let's now look at the complete solution for 0=n .  Simplifying Eq. (17) we can write 
the 0=n  normal modes as 
 
 ( ) ( ) ( ) ( )[ ]ctaBctaAEaJGtq iiiiiii 00000000,0 sin~cos~~,, += ρφρ , (21) 
 
where 00 ρia  is the i'th zero of ( )sJ 0 .  Notice that in Eq. (21) we have changed the 
labeling of the solution; we now label the normal modes with two integers:  the first 
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( 0= ) corresponds to n , and the second ( i ) labels the value of a  that makes the 
solution vanish at the boundary.  Notice that the only spatial variable in Eq. (21) is ρ :  
the dependence on φ  is gone.  Snapshots of first four normal-mode solutions are 
shown on the previous page.  The class web site has animated (time dependent) 
versions of these solutions.  As evident in the animations [and should be evident from 
Eq. (21)], these solutions are radially symmetric versions of standing waves. 
 
B. 1=n  Normal Modes 
For any other value of n , the normal modes are found in essentially the same manner.  
We must again satisfy the bc at the edge of the drum head, which determines the 
values of a .  For 1=n  the zeros of ( )sJ1  are 3.832, 7.016, 10.173, 13.325, … Thus, for 

1=n  the boundary condition is satisfied for 
 
 =0ρa 3.832, 7.016, 10.175, 13.325,  … (22) 
 
This is illustrated in the following figure.   
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For the complete solution we thus have 
 
 ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]ctaBctaAFEaJGtq iiiiiii 111111111,1 sin~cos~sin~cos~,, ++= φφρφρ . (23) 
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Because the φ  dependence is no longer trivial, this solution is a bit more complicated 
than that for 0=n .  For 0=n  the disappearance of  φ  resulted in only one linearly 
independent solution (in terms of spatial variables – there are still two linearly 
independent solutions if one considers time).  Here, however, the ( )φcos  and ( )φsin  
solutions are linearly independent.  For simplicity, let's just consider the solution with 

0~
1 =F , which leaves only the ( )φcos  term.  Then we have 

 
 ( ) ( ) ( ) ( ) ( )[ ]ctaBctaAEaJGtq iiiiiii 11111,1,1 sin~cos~cos~,, += φρφρ . (24) 
 
The following figure shows snapshots of this solution.  Animated versions are again 
available on the class web site.   
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IV.  Concluding Remarks 
That is it for separation of variables (until you run into them again in some later 
course, or perhaps while doing some research!).  Summarizing, we have seen that we 
can obtain solutions to the wave equation in three different coordinate systems using 
this technique.  Sometimes these solutions are simple, sometime they are not so 
simple, at least in terms of functions with which you may be familiar.  Each solution is 
labeled by three independent separation constants, which may or may not be 
constrained to certain values.  Because the ordinary differential equations that give us 
these solutions are homogeneous and linear, there are also undetermined 
multiplicative factors associated with each part of the solution.  Often (at least) some 
of the separation constants and the multiplicative factors are determined by physical 
considerations, such as imposed boundary conditions.  In the example that we just did 
we saw that the parameter a  must take on discrete values in order for the boundary 
condition at the edge of the drumhead to be satisfied. 
 
While separation-of-variables solutions can be interesting in their own right (as in the 
case of the drumhead modes), I'll again remind you that they are also quite useful 
because they can be used to construct a basis for any solution to the wave equation, 
much as we previously discussed for the 1D wave equation.  This point has been 
previously discussed in Sec. III of the Lecture 19 notes.   
 
Exercises 
 
*23.1  Using the definition of s  and the chain rule, derive Eq. (7) from Eq. (6).  (Hint:  
you may wish to review the Lecture 21 notes.) 
 
*23.2  The figure on p. 2 indicates that ( ) 002 =j .  Using Eq. (10e) show that this is 
indeed the case.   
 
*23.3  The two linearly independent combinations of the spherical Bessel functions 
 

( ) ( ) ( ) ( )siysjsh lll +=1  and ( )( ) ( ) ( )siysjsh lll −=2  
 
are know as spherical Bessel functions of the third kind.  Using these definitions and 
Eq. (10), express ( )( )sh 1

1  and ( ) ( )sh 2
1  in terms of the functions ise  and ise− . 

 
*23.4  Normal Modes Inside a Sphere. 
Starting with Eq. (12) find all normal-mode solutions to the wave equation inside a 
sphere that satisfy all of the following conditions:  the solutions are (1) real, (2) 
spherically symmetric, (3) finite everywhere, and (4) vanish on the boundary of the 
sphere, which has a radius of 0r .   


