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Separation of Variables in Spherical Coordinates 
 
Overview and Motivation:  We look at separable solutions to the wave equation in 
one more coordinate system – spherical (polar) coordinates.  These coordinates are 
most useful for solving problems with spherical symmetry. 
 
Key Mathematics:  Spherical coordinates, the chain rule, and associated Legendre 
functions (including Legendre polynomials).   
 
I.  Spherical Coordinates and the Wave Equation 
As in the case of the cylindrical-coordinates version of the wave equation, our first job 
will be to express the Laplacian 2∇  in spherical coordinates ( )φθ ,,r , which are defined 
in terms of Cartesian coordinates ( )zyx ,,  as 
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The diagram at the top of the next page graphically illustrates these coordinates for 
the vector r .  The coordinate r  is the length of r ; the coordinate θ  (known as the 
polar angle) is the angle of the vector r  from the z  axis; the coordinate φ  (known as 
the azimuthal angle) is the angle of the xy -plane projection of r  from the x  axis to 
the y  axis.  Notice that the coordinate φ  is also used in cylindrical coordinates. 
 
To write f2∇  (where f  is some function of r , θ , and φ ) in spherical coordinates we 
go through the same procedure as we did for cylindrical coordinates.  We think of f  
as a function of ,x  y , and z  through the new coordinates r , θ , and φ  
 
 ( ) ( ) ( )[ ]zyxzyxzyxrff ,,,,,,,, φθ=  
 
and then re-express 
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in terms of the new coordinates using the chain rule.  For example, to re-express the 
x -derivative term we first use the chain rule to write 
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Using Eq. (3) we can then express the second derivative as 
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and then using the chain rule again we can write 
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Pretty ugly, eh?  Actually, if you scrutinize Eq. (5) you will see that there is a bit of 
symmetry present:  switching any of the spherical coordinates results in the same 
equation.   
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Although we will not go through the rest of the procedure, you should recall that 
there are two types of terms in Eq. (5).  There are derivatives of f  with respect to the 
new variable (which remain unchanged) and there are derivatives of the new variables 
with respect to the old variable x .  We must calculate these second type of derivatives 
and then express them in terms of the new variables using Eq. (1).  If we go through 
this procedure for all three terms in the Laplacian and sum everything up, we end up 
with the spherical-coordinates expression for the wave equation 
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II.  Separation of Variable in Spherical Coordinates   
As before we look for separable solutions to the wave equation by assuming that we 
can write ( )trq ,,, φθ  as a product solution 
 
 ( ) ( ) ( ) ( ) ( )tTrRtrq φθφθ ΦΘ=,,, . (7) 
 
Substituting this into Eq. (6) and dividing the result by ( ) ( ) ( ) ( )tTrR φθ ΦΘ  yields 
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A. Dependence on Time 
As with Cartesian and cylindrical coordinates, we again make the argument that the 
rhs of Eq. (8) is independent of t , and so the lhs of this equation must be constant.  
As with cylindrical coordinates we call this constant 2k−  (where we are thinking of k  
as real) and so we again have 
 
 022 =+′′ TkcT , (9) 
 
which has the two linearly independent solutions, 
 
 ( ) ikct

k eTtT ±± = 0 . (10) 
 
B. Dependence on φ  
Equating the rhs of Eq. (8) to 2k− , multiplying by ( )θ22 sinr , and doing some 
rearranging of terms gives us 
 



Lecture 22  Phys 3750 

D M Riffe -4- 4/3/2013 

 ( ) ( ) ( ) ( ) ( )[ ] ′Θ′
Θ

−′′−−=
Φ
Φ ′′

θθθθ sinsinsinsin 2
2

222 Rr
R

rk , (11) 

 
which separates out the φ  dependence from r  and θ .  Equating the lhs of Eq. (11) to 
the constant 2m−  gives us the equation for Φ ,1 
 
 02 =Φ+Φ ′′ m , (12) 
 
which, yet again, is the harmonic oscillator equation.  Equation (12) has the solutions 
 
 ( ) φφ im

m e±± Φ=Φ 0 . (13) 
 
Again, because we require continuous solutions as a function of φ , we must restrict 
m  to integer values, K,2,1,0 ±±=m  .  Note that the dependence on φ  is exactly the 
same as in the cylindrical-coordinates case.   
 
C. Dependence on θ . 
The last variable that we will deal with today is the polar angle θ .  If we now equate 
the rhs of Eq. (11) to 2m− , divide by ( )θ2sin , and do a bit of rearranging, we end up 
with 
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which separates the θ  and r  variables.  Each side of this equation is a constant, which 
by convention is taken to be ( )1+− ll .  This results in the differential equation for 
( )θΘ  
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This is definitely not the harmonic oscillator equation!  It is however, close to the 
standard form of another well known equation. To put Eq. (15) in this standard form 
we make the change of variables ( ) ( )θθ cos=s .  We now think of Θ  as a function of θ  
through the variable s  as ( )[ ]θsΘ=Θ , and we write the derivatives of Θ  as 
 

                                                 
1 You may ask why we do we use 2m−  for spherical coordinates when we used 2n−  for cylindrical 
coordinates?  I have no idea.   
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Substituting Eq. (16) into Eq. (15) yields, after a bit of algebra, 
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This equation is known as the associated Legendre equation.  As with all second-
order linear, ordinary differential equations, there are two linearly independent 
solutions.  These solutions are know as associated Legendre functions of the first 
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and second kind, which are denoted ( )sPml  and ( )sQm
l , respectively.  Usually we are 

interested in only the ( )sPml  solutions because the ( )sQm
l  solutions diverge as 1±→s .   

 
The figure on the previous page plots some of the ( )sPml  functions for various values 
of l  and m .  Notice that these functions are plotted for 11 ≤≤− s  because this 
corresponds to πθ ≤≤0 , the range of the polar angle θ .  The following statements 
summarize some key feature of the associate Legendre functions, some of which are 
evident in the figure. 
 
(i)  For the ( )sPml  solutions to Eq. (17) to remain finite, the parameter l  must be an 
integer and m , which is already an integer, must satisfy lm ≤ .  (You are already likely 
familiar with this result from quantum mechanics, where the angular parts of the 
separable solutions of the Schrödinger in spherical coordinates are identical to the 
solutions here.)   
 
(ii)  For 0=m  (azimuthal symmetry) the solutions ( ) ( )sPsP ll

0≡  are known as 
Legendre polynomials.  These functions are polynomials in s  of order l .  The first 
four Legendre polynomials are 
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(iii)  A nice simple formula for calculating the Legendre polynomials, known as 
Rodrigues' formula, is 
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(iv)  For the associated Legendre functions Rodrigues' formula generalizes to  
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(v)  The first few 0=m  Legendre functions of the second kind can be written as 
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(vi)  For 1≥l  the 0=m  Legendre functions of the second kind can be expressed in 
terms of the Legendre functions of the first kind as 
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The following figure plots the first few of these functions.  Notice that they all diverge 
as 1→s , although because the divergence involves the logarithm function, the 
divergence is very slow, as the graph on the rhs of the figure illustrates.   
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As with the Bessel functions, more entertaining facts about associated Legendre 
functions can be found in Handbook of Mathematical Functions by Abramowitz and 
Stegun or in the online NIST Digital Library of Mathematical Functions. 
 
Now that we have some idea of the behavior of these functions, we can get back to 
our solution of the wave equation.  Because ( )θcos=s  the solutions to Eq. (15) are 
 
 ( ) ( )( )θθ cos,

m
lP

P
ml PΘ=Θ     and    ( ) ( )( )θθ cos,

m
lQ

Q
ml QΘ=Θ , (23) 

 
(or some linear combination of the two solutions)  Because they remain finite, we are 
usually exclusively interested in solutions involving Legendre functions of the first 
kind.  The figure at the top of the next page plots some of the  ( )( )θcosm

lP  functions 
as a function of θ .  Notice that they are similar, but not identical to the functions 
plotted on p. 5.   
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Exercises 
 
*22.1  Calculate the change-of-coordinates derivatives xr ∂∂ , x∂∂θ , and x∂∂φ  and 
express them as functions of the new variables.   
 
*22.2  Consult the figure on p. 5.  For the function ( )sPml , how many zero crossings 
of are there for 11 <<− s ?  That is, deduce the formula for the number of zero 
crossings as a function of l  and m . 
 
*22.3  The Legendre polynomials ( )xPl0  can be used as a set of orthogonal basis 
functions on the interval 11 ≤≤− x .  Using the standard definition of the inner 
product, show that 0P , 1P , and 2P  are all orthogonal.  Find normalized versions of 
each of these functions. 
 
*22.4  Using Eq. (7), derive Eq. (8) from Eq. (6).  
 


