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Separation of Variables in Cylindrical Coordinates 
 
Overview and Motivation:  Today we look at separable solutions to the wave 
equation in cylindrical coordinates.  Three of the resulting ordinary differential 
equations are again harmonic-oscillator equations, but the fourth equation is our first 
foray into the world of special functions, in this case Bessel functions.  We then 
graphically look at some of these separable solutions. 
 
Key Mathematics:  More separation of variables; Bessel functions. 
 
I.  Cylindrical-Coordinates Separable Solutions   
Last time we assumed a product solution ( ) ( ) ( ) ( ) ( )tTzZRtzq φρφρ Φ=,,,  to the 
cylindrical-coordinate wave equation 
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which allowed us to transform Eq. (1) into 
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We now go through a separation-of-variable procedure similar to that which we 
carried out using Cartesian coordinates in Lecture 19.  The procedure here is a bit 
more complicated than with Cartesian coordinates because the variable ρ  appears in 
the ΦΦ′′  term.  However, as we shall see, the equation is still separable.   
 
A. Dependence on Time 
As with Cartesian coordinates, we can again make the argument that the rhs of Eq. (2) 
is independent of t , and so the lhs of this equation must be constant.  Cognizant of 
the fact that we are interested in solutions that oscillate in time, we call this constant 

2k−  (where we are thinking of k  as real) and so we have 
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which can be rearranged as 
 
 022 =+′′ TkcT . (4) 
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By now we should recognize this as the harmonic oscillator equation, which has two 
linearly independent solutions, 
 
 ( ) ikct

k eTtT ±± = 0 . (5) 
 
And so again we have harmonic time dependence to the separable solution.1  For the 
present case it is simplest to assume that k  can be positive or negative; thus we really 
only need one of these solutions.  So we simply go with 
 
 ( ) ikct

k eTtT 0= . (6) 
 
B. Dependence on z  
Using Eq. (3), the lhs of Eq. (2) can replaced with 2k− , which gives, after a small bit 
of rearranging, 
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Notice that the rhs of Eq. (7) is independent of z .  Thus the lhs is constant, which we 
call 2a− .2  We thus have 
 

 22 a
Z
Zk −=
′′

−− , (8) 

 
which can be rearranged as 
 
 ( ) 022 =−+′′ ZakZ , (9) 
 
which, yet again, is the harmonic oscillator equation!  The solutions are 
 
 zaki

ak eZZ 22

0,
−±± = . (10) 

 
Although k  and a  can be any complex numbers, let's consider the case where both 

2k  and 2a  are real and positive.  Then these solutions oscillate if 22 ak > , 
exponentially grow and decay if 22 ak < , and are constant if 22 ak = .  Note that here, 
because the square root is always taken as positive, we need to keep both the positive-
sign and negative-sign solutions.  We can, however, assume that 0≥a .   
 
                                                 
1 It should perhaps be obvious that this will always be the case for separable solutions to the wave equation. 
2 Why not?  We can call the constant anything we want.  It just so happens that 2a−  is convenient.   



Lecture 21  Phys 3750 

D M Riffe -3- 3/18/2013 

C. Dependence on φ  
Using Eq. (8), the lhs of Eq. (7) can be replaced with 2a− , which gives us 
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To separate the ρ  and φ  dependence this equation can be rearranged as 
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Because each side only depends on one independent variable, both sides of this 
equation must be constant.  This gives us our third separation constant, which we call 

2n .  The equation for Φ  we can then write as 
 
 02 =Φ+Φ ′′ n , (13) 
 
which is again the harmonic oscillator equation.  The solutions to Eq. (13) are 
 
 φin

n e±± Φ=Φ 0 . (14) 
 
Now we need to use a little physics.  Because we expect any physical solution to have 
the same value for 0=φ  and πφ 2=  we must have (for the +Φ n  solution) 
 
 π20 inee = , (15) 
 
or 
 
 π21 ine=  (16) 
 
Using Euler's relation, it is easy to see that Eq. (16) requires that n  be an integer.  
Now because n  can be a positive or negative integer, we do not need to explicitly 
keep up with the  −Φn  solution, and so we write for the φ  dependence 
 
 φin

n e0Φ=Φ ,        K,2,1,0 ±±=n  (17) 
 
D.  Dependence on ρ  
We are now left with one last equation.  Also setting the rhs of Eq. (12) equal to 2n   
and doing a bit of rearranging yields 
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 ( ) 02222 =−+′+′′ RnaRR ρρρ  (18) 
 
This is definitely not the harmonic oscillator equation!  Its solutions are well know 
functions, but to see what the solutions to Eq. (18) are we need to put it in "standard" 
form, which is a form that we can look up in a book such as Handbook of Mathematical 
Functions by Abramowitz and Stegun (the definitive, concise book on special functions, 
which has been updated an is available online as the NIST Digital Library of 
Mathematical Functions). 
 
To put Eq. (18) in standard form, we make the substitution ρas = .  Now the 
substitution would be trivial, except that because Eq. (18) is a differential equation in 
the independent variable ρ , we need to change the derivatives in Eq. (18) to 
derivatives in s .  As usual we do this using the chain rule.  If we now think of ( )ρR  as 
a function of ρ  through the new independent variable s , i.e., as ( )[ ]ρsR , then using 
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we can rewrite Eq. (18) as 
 

 ( ) ( ) ( ) ( ) 0222
2

=−+′+′′





 sRnsasR

a
sasR

a
s . (20) 

 
where we now emphasize that ( )sRR = .  Equation (20) obviously simplifies to  
 
 ( ) ( ) ( ) ( ) 0222 =−+′+′′ sRnssRssRs . (21) 
 
This equation is know as Bessel's equation.  It's two linearly independent solutions 
are known as Bessel functions ( )sJ n  and Neumann functions ( )sYn .  Sometimes 
the functions ( )sJ n  and ( )sYn  are called Bessel functions of the first and second 
kind, respectively.  The subscript n  is know as the order of the Bessel function  
Although one can define Bessel functions of non-integer order, one outcome of the 
Φ  equation is that n  is an integer, so we only need deal with integer-order Bessel 
functions for this problem.   



Lecture 21  Phys 3750 

D M Riffe -5- 3/18/2013 

The following figure plots both ( )sJ n  and ( )sYn  for several values of (positive) n .   
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There are several facts about Bessel functions that are worth noting, some of which 
can be discerned from these graphs: 
 
(i) ( ) 100 =J ; ( ) 00 =nJ , 0≠n .  ( )sYn  diverges as 0→s .  Also notice the behavior of 
these functions as 0→s  for increasing n :  the functions ( )sJn  converge more rapidly 
while the functions ( )sYn  diverge more rapidly.   
 
(ii) ( )sJn  and ( )sYn  oscillate with decreasing amplitude as ∞→s . 
 
(iii) It is customary to define ( ) n

n
n JJ 1−=−  and ( ) n

n
n YY 1−=− .  (Notice that the Bessel 

equation only depends upon 2n , so the n−  solution must be essentially the same as 
the n+ solution.) 
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(iv)  Bessel functions have the series representation 
 

 ( ) ( )
( )∑

∞

=

+









++Γ
−

=
0

2

2 21!2
1

m

nm

m

m

n
s

nmm
sJ , (22) 

 
where  
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is the Gamma function.  Note that for integer x , ( ) ( )( ) 121!1 L−−==+Γ xxxxx .   
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More entertaining facts about Bessel functions can be found in the NIST Digital 
Library of Mathematical Functions.   
 
Now because ρas = , the solutions to Eq. (18) are thus simply ( )ρaJ n  and ( )ρaYn .  
That is, we have the two linearly independent results  
 
 ( ) ( )ρρ aJRR nJ

J
an =,      and     ( ) ( )ρρ aYRR nY

Y
an =, . (25a) – (25b) 

 
II.  Separable Solutions   
Let's put all of this analysis together and write down our separable solutions.  Let's 
further assume that (1) we want the z  dependence of the solution to oscillate (or at 
least not either grow or decay exponentially) and (2) we are only interested in 
solutions that remain finite as 0→ρ .  We then have the following pieces to our 
separable solution 
 
 ( ) ikct

k eTtT 0= ,  ∞<<∞− k  (25a) 
 
 zaki

ak eZZ 22

0,
−±± = , ka ≤  (25b) 

 
 φin

n e0Φ=Φ ,  K,2,1,0 ±±=n  (25c) 
 
 ( ) ( )ρρ aJRR nna 0, = . (25d) 
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Putting all of Eq. (24) together we can write our separable solutions as 
 
 ( ) ( ) ikctzakiin

nkankan eeeaJCtzq 22

,,,, ,,, −±±± = φρφρ . (26) 
 
Let's look at some graphs of some of these functions.  For simplicity we look at 
functions that have no z  dependence. From Eq. (26) we see that these are solutions 
where ak ±= .  With this constraint we can write Eq. (6) as 
 
 ( ) ( ) iactin

naanaan eeaJCtzq ±
±± = φρφρ ,,,, ,,, . (27) 

 
The following pictures show graphs (with 1=a ) of ( )[ ] ( )ρφρ aJzq aa 0,,0 0,,,Re = , 

( )[ ] ( ) ( )φρφρ cos0,,,Re 1,,1 aJzq aa = , and ( )[ ] ( ) ( )φρφρ 2cos0,,,Re 2,,2 aJzq aa = .   

Re q0( )Re q0( )
 

Re q1( )Re q1( )
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Re q2( )Re q2( )
 

 
For the moment, this ends our discussion of cylindrical coordinates.  In the next 
lecture we move on to studying the wave equation in spherical-polar coordinates.   
 
Exercises 
 
*21.1  Dispersion Relation. 
Consider the solution ( ) ( ) ( )[ ] ( ) ikctzaki

nkankan eenaiYaJCtzq −−±±± +=
22

cos,,, ,,,, φρρφρ .  
From this equation it is clear that the frequency ω  is equal to ck .  This looks like 
there is a dispersion relation, but it is not really clear what k  represents in this case.  
Here we show that if positive, it is essentially the magnitude of a wave vector 

zρk ˆˆ zkk += ρ  (where the meanings of the unit vectors should be obvious).  To do this 
we take advantage of the fact that for large s , the Bessel functions have the 
asymptotic expansions 

 

( ) ( )ππ
π 4
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2
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π 4

1
2
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−−≈ ns
s
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(a)  Using these equations show that component of the wave vector in the ρ  
direction is ak =ρ .   
(b)  Identify the z  component zk  of the wave vector. 
(c)  Then, show that 222 kkk z =+ρ . 
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*21.2  Linear Combinations of Bessel Functions.  The Bessel functions of the third 
kind (also known as Hankel functions) are defined as 
 

( )( ) ( ) ( )siYsJsH nnn +=1         and        ( )( ) ( ) ( )siYsJsH nnn −=2 . 
 
(a)  Using the asymptotic expansions given in Exercise 21.1, show for large s  that  
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(b)  Using the results of (a) describe the behavior of the waves  
 

( ) ( ) ( )( ) iact
aa eaHtzq −= ρφρ 1

0
1

,,0 ,,,         and        ( ) ( ) ( )( ) iact
aa eaHtzq −= ρφρ 2

0
2

,,0 ,,, . 
 
for large ρ  (assuming that 0>a )  (That is, are they standing or traveling waves, etc).   
 
 


