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Harmonic Oscillations / Complex Numbers 
 
Overview and Motivation:  Probably the single most important problem in all of 
physics is the simple harmonic oscillator. It can be studied classically or quantum 
mechanically, with or without damping, and with or without a driving force.  As we 
shall shortly see, an array of coupled oscillators is the physical basis of wave 
phenomena, the overarching subject of this course.  In this lecture we will see how the 
differential equation that describes the simple harmonic oscillator naturally arises in a 
classical-mechanics setting.  We will then look at several (equivalent) ways to write 
down the solutions to this differential equation.   
 
Key Mathematics:  We will gain some experience with the equation of motion of a 
classical harmonic oscillator, see a physics application of Taylor-series expansion, and 
review complex numbers.   
 
I.  Harmonic Oscillations  
The freshman-physics concept of an (undamped, undriven) harmonic oscillator (HO) 
is something like the following picture, an object with mass m  attached to an 
(immovable) wall with a spring with spring constant sk .  (There is no gravity here; 
only the spring provides any force on the object.) 
 

 
Note that the oscillator has only two parameters, the mass m  and spring constant 

sk .  Assuming that the mass is constrained to move in the horizontal direction, its 
displacement q  (away from equilibrium) as a function of time t  can be written as 
 
 ( ) ( )φω += tBtq ~sin , (1) 
 
where the angular frequency ω~  depends upon the oscillator parameters m  and sk  
via the relation mks=ω~  .  The amplitude B  and the phase φ  do not depend upon 
m  and sk , but rather depend upon the initial conditions (the initial displacement ( )0q  

mks 
q 

q = 0 
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and initial velocity ( ) ( )00 q
dt
dq

&=  of the object).  Note that the term initial conditions 

is a technical term that generally refers to the minimal specifications needed to 
describe the state of the system at time 0=t .  You should remember that the angular 
frequency is related to the (plain old) frequency ν  via πνω 2~ =  and that the frequency 
ν  and period T  are related via T1=ν .   
 
Now because the sine and cosine functions are really the same function (but with just 
a shift in their argument by 2π± ) we can also write Eq. (1) as 
 
 ( ) ( )ψω += tBtq ~cos , (2) 
 
where the amplitude B  is the same, but the phase 2πφψ −=  (for the same initial 
conditions).  It probably is not obvious (yet), but we can also write Eq. (1) as 
 
 ( ) ( ) ( )tEtDtq ωω ~sin~cos += , (3) 
 
where the amplitudes D  and E  depend upon the initial conditions of the oscillator.   
Note that the term harmonic function simply means a sine or cosine function.  Note 
also that all three forms of the displacement each have two parameters that depend 
upon the initial conditions.   
 
II.  Classical Origin of Harmonic Oscillations  
A. The Harmonic Potential 
The harmonic motion of the classical oscillator illustrated above comes about because 
of the nature of the spring force (which is the only force and thus the net force) on 
the mass, which can be written as 
 
 ( ) qkqF ss −= . (4) 
 
Because the spring force is conservative, sF  can be derived from a potential energy 
function ( )qV  via the general (in 1D) relationship 
 

 ( ) ( )
dq

qdVqF −= . (5) 

 
A potential energy function for the spring that gives rise to Eq. (4) for the spring 
force is 
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 ( ) 2

2
1 qkqV ss =  (6) 

 
(do the math!). 
 
Let's see how the potential energy represented by Eq. (6) arises in a rather general way.  
Let's consider an object constrained to move in one dimension (like the oscillator 
above).  However, in this case all we know is that the potential energy function has at 
least one local minimum, as illustrated in the following graph of ( )qV  vs q . 
 

 
 
Let's now assume that the mass is located near the potential energy minimum on the 
right side of the graph and that its energy is such that it does not move very far away 
from this minimum.  Just because we can, let's also assume that this minimum defines 
where 0=q  and 0=V , as shown in the picture.   
 
Now here is where some math comes in.  If the mass does not move very far away 
from 0=q  then we are only interested in motion for small q .  Let's see what the 
potential energy function looks like in this case.  For small q  it makes sense to expand 
the function ( )qV  in a Taylor series 
 

 ( ) ( ) ( ) ( ) ( ) ...0
6
10

2
100 32 +′′′+′′+′+= qVqVqVVqV , (7) 

 
where, e.g., ( )0V ′  is the first derivative of V  evaluated at 0=q .  Now the rhs of Eq. (7) 
has an infinite number of terms and so is generally quite complicated, but often only 
one of these terms is important.  Let's look at each term in order.  The first term ( )0V  
is zero because we defined the potential energy at this minimum to be zero.  So far so 
good.  The next term is also zero because the slope of the function ( )qV  is also zero at 

( )qV  

0=q

0=V  
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the minimum.  The next term is not zero and neither, in general, are any of the others.  
However, if q  is small enough, these other terms are negligible compared to the third 
(quadratic) term.1  Thus, if the object's motion is sufficiently close to the minimum in 
potential energy, then we have 
 

 ( ) ( ) 20
2
1 qVqV ′′≈ . (8) 

 
So this is pretty cool.  Even though we have no idea what the potential energy 
function is like, except that it has a minimum somewhere, we see that if the object is 
moving sufficiently close to that minimum, then the potential energy is the same as 
for a mass attached to a spring where the effective spring constant sk  is simply the 
curvature V ′′  evaluated at the potential energy minimum ( 0=q ), ( )0V ′′ .2  Equation (8) 
is known as the harmonic approximation to the potential ( )qV  (near the minimum). 
 
B. Harmonic Oscillator Equation of Motion 
OK, so we see that the potential energy near a minimum is equivalent to the potential 
energy of an harmonic oscillator.  If we happen to know how an harmonic oscillator 
behaves, then we know how our mass will behave near the minimum.  But let's 
assume for the moment that we know nothing about the specifics of a harmonic 
oscillator.  Where do we go from here to determine the motion of the mass near the 
minimum?  Well, as in most classical mechanics problems we use Newton's second 
law, which is generally written (for 1D motion) as 
 

 
m

F
a net= , (9) 

 
where a  is the acceleration of the object and netF  is the net force (i.e., sum of all the 
forces) on the object.   
 
In the case at hand, in which the object's acceleration is qdtqd &&=22  and the net force 
comes only from the potential energy (near the minimum) Eq. (9) becomes 
 

                                                 
1 In physics we are often interested in comparing terms in expressions such as Eq. (7), and we often use the 
comparators >>  and <<  to compare these terms.  These two comparators actually mean ×< 10

1  and 
×> 10 , respectively.  For example, ba >>  indicates that  ba 10> .   

 
2 Exceptions can occur.  If the potential minimum is so flat that ( ) 00 =′′V  then the third term will be zero 
and it will be some higher-order term(s) that determine(s) the motion near the potential-energy minimum.  
The object will oscillate, but it will not oscillate harmonically. 
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 ( )q
m

Vq 0′′
−=&& , (10) 

 
or, identifying ( )0V ′′  as the spring constant sk  we can write Eq. (10) as 
 

 0=+ q
m
k

q s&& . (11) 

 
Equation (11) is known as the equation of motion for an harmonic oscillator.  
Generally, the equation of motion for an object is the specific application of Newton's 
second law to that object.  Also quite generally, the classical equation of motion is a 
differential equation such as Eq. (11).  As we shall shortly see, Eq. (11) along with the 
initial conditions ( )0q  and ( )0q&  completely specify the motion of the object near the 
potential energy minimum.  Note that two initial conditions are needed because Eq. 
(11) is a second-order equation.   
 
Let's take few seconds to classify this differential equation.  It is second order 
because the highest derivative is second order.  It is ordinary because the derivatives 
are only with respect to one variable ( t ).  It is homogeneous because q  or its 
derivatives appear in every term, and it is linear because q  and its derivatives appear 
separately and linearly in each term (where they appear).  An major consequence of 
the homogeneity and linearity is that linear combinations of solutions to Eq. (11) are 
also solutions.  This fact will be utilized extensively throughout this course. 
 
C.  HO Initial Value Problem 
The solution to Eq. (11) can be written most generally as either Eq. (1), Eq. (2), or Eq. 
(3) (where mks=ω~ ).  Let's consider Eq. (3) 
 
 ( ) ( ) ( )tEtDtq ωω ~sin~cos += , (3) 
 
and see that indeed the constants D  and E  are determined by the initial conditions.  
By applying the initial conditions we are solving the initial value problem (IVP) for 
the HO.  Setting 0=t  in Eq. (3) we have 
 
 ( ) Dq =0  (12) 
 
Similarly, taking the time derivative of Eq. (3) 
 
 ( ) ( ) ( )tEtDtq ωωωω ~cos~~sin~ +−=&  (13) 
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and again setting 0=t  gives us 
 
 ( ) Eq ω~0 =& . (14) 
 
 
Hence, the general solution to the (undamped, undriven) harmonic oscillator problem 
can be written as 
 

 ( ) ( ) ( ) ( ) ( )tqtqtq ω
ω

ω ~sin~
0~cos0

&
+= . (15) 

 
To summarize, for a given set of initial conditions ( )0q  and ( )0q& , Eq. (15) is the 
solution to Eq. (11), the harmonic oscillator equation of motion.   
 
III.  Complex Numbers  
In our discussion so far, all quantities are real number (with possibly some units, such 
as 3=q  cm).  However, when dealing with harmonic oscillators and wave phenomena, 
it is often useful to make use of complex numbers, so let's briefly review some facts 
regarding complex numbers. 
 
The key definition associated with complex numbers is the square root of −1, known 
as i .  That is, 1−=i .  From this all else follows.   
 
Any complex number z  can always be represented in the form 
 
 iyxz += , (16) 
 
where x  and y  are both real numbers.  Common notations for the real and imaginary 
parts of z  are ( )zx Re=  and ( )zy Im= .  It is also often convenient to represent a 
complex number as a point in the complex plane, in which the x  coordinate is the 
real part of z  and the y  coordinate is the imaginary part of z , as illustrated by the 
picture on the following page. 
 
As this can be inferred from this picture, we can also use polar coordinates r  and θ  
to represent a complex number as 
 
 ( ) ( ) ( ) ( )[ ]θθθθ sincossincos irirrz +=+= . (17) 
 
Using the infamous Euler relation (which you should never forget!) 
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 ( ) ( )θθθ sincos iei +=  (18) 
 
 
we see that a complex number can also be written as 
 
 θirez = . (19) 
 
The last important definition associated with complex numbers is the complex 
conjugate of z  defined as 
 
 iyxz −=* . (20) 
 
As is apparent in the diagram above, this amounts to a reflection about the real ( x ) 
axis.  Note the following relationships: 
 

 ( )zxzz Re
2

*

==
+ , (21) 

 

 ( )zy
i
zz Im

2

*

==
− , 

 
and 
 

Real Axis ( )x  

Imaginary Axis ( )y  

r

θ

yxz i+=

y  

x

yxz i−=∗  
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 222* ryxzz =+= . (22) 
 
Note also the absolute value of a complex number, which is equal to r , is given by 
 
 *zzrz == . (23) 
 
IV.  Complex Representations of Harmonic Oscillator Solutions 
Because the HO equation of motion [Eq. (11)] is linear and homogeneous, linear 
combinations of solutions are also solutions.  These linear combinations can be 
complex combinations.  For example, because ( )tω~cos  and ( )tω~sin  are both solutions 
to Eq. (11) (we are not worrying about any particular initial conditions at the moment), 
another solution to Eq. (11) is the complex linear combination 
 
 ( ) ( ) ( ) tietittq ωαωαωα ~~sin~cos =+= , (24) 
 
where α  is some complex number.   
 
So what is the point here?  Well, as we shall see as we go along, it is often convenient 
to work with complex representations of solutions to the harmonic oscillator equation 
of motion (or to the wave equation that we will be dealing with later).  So what does it 
mean to have a complex displacement?  Nothing, really – a displacement cannot be 
complex, it is indeed a real quantity.  So if we are dealing with a complex solution, 
what do we do to get a physical (real) answer?  There are at least three approaches:   
 
(1)  The first approach is to, up front, make the solution manifestly real.  For example, 
let's say you want to work with the general complex solution 
 
 ( ) titi eetq ωω βα ~~ −+= , (25) 
 
where α  and β  are complex numbers.  You can impose the condition *αβ = , which 
results in ( )tq  being real.   
 
(2)  Another approach is to simply work with the complex solution until you need to 
doing something such as impose the initial conditions.  Then, for example, if we are 
working with the form in Eq. (25), the initial conditions might be something like 

( )[ ] Aq =0Re , ( )[ ] 00Im =q , ( )[ ] Bq =0Re & , and ( )[ ] 00Im =q& .  These four conditions would 
then determine the four unknowns, the real and imaginary parts of α  and β  (and 
again would result in ( )tq  being real). 
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(3)  A third approach is to simply use the real part of a solution when something like 
the initial conditions are needed, and then impose the initial conditions.  (Alternatively, 
because the imaginary part of the solution is also a real number, you could use the 
imaginary part of the solution if you were so inclined.) 
 
Note that these different approaches work because the harmonic oscillator equation 
of motion is real and linear.  We will not worry about the details of this at the moment, 
but if you are interested you can read more about this on pp. 9-10 of Dr. Torre’s text, 
Foundations of Wave Phenomena (FWP).   
 
 
Exercises 
*2.1  Show that Eqs. (1) and (2) are solutions to Eq. (11), the equation of motion for 
the harmonic oscillator.   
 
*2.2  Assuming the form of Eq. (1) for the solution to Eq. (11), find the values of B  
and φ  in terms of the initial conditions ( )0q  and ( )0q& . 
 
*2.3  Assuming the form of Eq. (2) for the solution to Eq. (11), find the values of B  
and ψ  in terms of the initial conditions ( )0q  and ( )0q& .  [This exercise along with 
Exercise 2.2 shows that Eqs. (1) and (2) are equivalent.] 
 
**2.4  Quadratic approximation to a particular potential energy.  Consider the 
potential energy function ( ) ( )qqV κcos1−= , where κ  is some positive constant. 
(a)  Carefully (!) plot (using a computer math program such as Mathcad, Maple, etc.) 
this function for πκπ <<− q  (For simplicity in making this and the following graph 
you may set κ  to 1)  Make sure that your axes are carefully labeled on this and 
all other graphs. 
(b)  Find the force ( )qF  associated with this potential-energy function (for arbitrary 
positive κ ). 
(c)  Taylor series expand the potential-energy function about the point 0=q ;  keep all 
terms up to the 4q  term. 
(d)  What is the effective spring constant sk associated with this potential-energy 
function?   
(e)  What condition on q  is necessary so that the 4q  term (in the Taylor series 
expansion) is much smaller (<< ) that the (harmonic) 2q  term? (See footnote 1 on p. 4.) 
(f)  Replot the original function ( ) ( )qqV κcos1−=  and the harmonic approximation to 
this function from πκπ <<− q .  Based on this graph, for what values of qκ  do you 
expect the harmonic approximation to be valid?  How does this compare to your 
answer in (e)? 
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**2.5  The Euler relation.  The Euler relation ( ) ( )θθθ sincos iei +=  can be shown to 
be true by comparing, term by term, the Taylor series of both sides of the relation.  
Calculate the first five Taylor series terms (about 0=θ , so these will be the 0θ , 1θ  , 

2θ , 3θ , 4θ , and 5θ  terms) of each side of the equation and show that they are 
equivalent. 
 
*2.6  Write the following complex expressions in the form iyx +  
(a)  ( )45 πie  
(b)  ( )( )ii 2345 +−  

(c)  
i76

1
−

 

(d)  ( )2162 ππ ii ee −⋅  
 
*2.7  Write the expressions in Exercise 2.6 in the form θiAe , where A  and θ  are both 
real. 
 
*2.8  Find the real part of ( ) titi eetq ωω αα

~~ −∗+= .  Here α  is complex.  Write your 
solution in terms of ( )αRe , ( )αIm , ( )tω~sin , and ( )tω~cos .   
 
*2.9  Complex solution and initial conditions 
(a)  Show that ( ) titi eetq ωω βα ~~ −+=  is a solution to Eq. (11), the harmonic oscillator 
equation of motion. 
(b)  Assuming that α  and β  are complex, find α  and β  in terms of the initial 
conditions ( )0q  and ( )0q& .  (Do this using one of the three methods discussed on p. 8.) 
 


