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3D Wave Equation and Plane Waves / 3D Differential Operators 
 
Overview and Motivation:  We now extend the wave equation to three-dimensional 
space and look at some basic solutions to the 3D wave equation, which are known as 
plane waves.  Although we will not discuss it, plane waves can be used as a basis for 
any solutions to the 3D wave equation, much as harmonic traveling waves can be 
used as a basis for solutions to the 1D wave equation.   We then look at the gradient 
and Laplacian, which are linear differential operators that act on a scalar field.  We 
also touch on the divergence, which operates on a vector field.   
 
Key Mathematics:  The 3D wave equation, plane waves, fields, and several 3D 
differential operators.   
 
I.  The 3D Wave Equation and Plane Waves 
Before we introduce the 3D wave equation, let's think a bit about the 1D wave 
equation, 
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Some of the simplest solutions to Eq. (1) are the harmonic, traveling-wave solutions 
 
 ( ) ( )tkxi

k eAtxq ω−+ =, , (2a) 
 
 ( ) ( )tkxi

k eBtxq ω+− =, , (2b) 
 
where, without loss of generality, we can assume that 0>= ckω .1  Let's think about 
these solutions as a function of the wave vector k .  First, we should remember that k  
is related to the wavelength via λπ2=k .  Let's now specifically think about the 
solution ( )txqk ,+ .  For this solution, if 0>k  then the wave propagates in the x+  
direction, and if 0<k , then the wave propagates in the x−  direction.  Thus, in either 
case, the wave propagates in the direction of k .  Similarly, for the solution ( )txqk ,−  the 
wave propagates in the direction opposite to the direction of k .   
 
We now introduce the 3D wave equation and discuss solutions that are analogous to 
those in Eq. (2) for the 1D equation.  The 3D extension of Eq. (1) can be obtained by 
adding two more spatial-derivative terms, yielding 
 

                                                 
1 If we assume 0<ω , then the two 0>ω  solutions just map into each other. 



Lecture 18  Phys 3750 

D M Riffe -2- 2/22/2013 

 







∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

2

2
2

2

2

z
q

y
q

x
qc

t
q  (3) 

 
where now ( )tzyxqq ,,,=  and x , y , and z  are standard Cartesian coordinates.  This 
equation can be used to describe, for example, the propagation of sound waves in a 
fluid.  In that case q  represents the longitudinal displacement of the fluid as the wave 
propagates through it.   
 
The 3D solutions to Eq. (3) that are analogous to the 1D solutions expressed by Eq. 
(2) can be written as 
 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eAtzyxq ω−+++ =,,,,, , (4a) 

 
 ( ) ( )tzkykxki

kkk
zyx

zyx
eBtzyxq ω+++− =,,,,,  (4b) 

 
As you may suspect, the wave equation determines a relationship between the set 
{ xk , yk , zk } and the frequency ω .  Substituting either Eq. (4a) or (4b) into Eq. (3) 
yields 
 
 ( )22222

zyx kkkc ++=ω . (5) 
 
As above, we can assume 0>ω , which gives  
 
 222

zyx kkkc ++=ω , 
 
the dispersion relation for the Eq. (4) solutions to the 3D wave equation.   
 
The solutions in Eq. (4) can be also written in a more elegant form.  If we define the 
3D wave vector 
 
 zyxk ˆˆˆ zyx kkk ++= , (6) 
 
and use the Cartesian-coordinate form of the position vector  
 
 zyxr ˆˆˆ zyx ++= , (7) 
 
then we see that we can rewrite Eq. (4) as 
 
 ( ) ( )tieAtq ω−⋅+ = rk

k r, , (8a) 



Lecture 18  Phys 3750 

D M Riffe -3- 2/22/2013 

 
 ( ) ( )tieBtq ω+⋅− = rk

k r, , (8b) 
 
where zkykxk zyx ++=⋅rk  is the standard dot product of two vectors.  The dispersion 
relation can then also be written more compactly as 
 
 kc=ω . (9) 
 
It is also the case that the wavelength λ  is related to k  via λπ2=k .   
 
Analogous to the discussion about the direction of the 1D solutions, the wave in Eq. 
(8a) propagates in the k+  direction while the wave in Eq. (8b) propagates in the k−  
direction.  This is why one usually sees the form in Eq. (8a):  the wave simply 
propagates in the direction that k  points in this case.   
 
These propagating solutions in Eq. (8) are known as plane waves.  Why is that, you 
may ask?  It is because at any given time the planes perpendicular to the propagation 
direction have the same value of the displacement of q .   
 
Let's see that this is so.  Consider the following picture.   
 

 
 
Keep in mind that the wave vector k  is a fixed quantity (for a given plane wave); its 
direction is indicated in the figure.  The dotted line in the picture represents a plane 
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that is perpendicular to k  and passes through the point in space defined by the vector 
r .  Now consider the dot product 
 
 ( )θcosrkrk ⋅=⋅  (10) 
 
This is simply equal to 0rk ⋅ , where 0r  is the position vector in the plane that is 
parallel to k .  Furthermore, for any position vector in the plane the dot product with 
k  has this same value.  That is, for any vector r  in the plane rk ⋅  is constant.  Thus, 
the plane-wave function ( )tiAe ω−⋅rk  has the same value for all points r  in the plane.   
 
A simple example of a plane wave is one that is propagating in the z  direction.  In 
that case the +q  plane wave is ( ) ( )tzki

k
z

z
eAtzq ω−+ =,,0,0 .  Notice that this wave does not 

depend upon x  or y .  That is, for a given value of z , the wave has the same 
displacement for all values of x  and y .  That is, it has the same displacement for any 
point on a plane with the same value of z .   
 
II.  Some 3D Linear Differential Operators   
A. The Laplacian 
The combination of spatial derivatives on the rhs of Eq. (3), 
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is the Cartesian-coordinate version of the linear differential operator know as the 
Laplacian, generically designated as either ∆  or 2∇  (del squared).  The del-squared 
representation is often used because the Laplacian can be though of as two successive 
(although different) applications of the differential expression that is simply known as 
del , which is represented by the symbol ∇ .2   
 
In Cartesian coordinates 
 

 zyx ˆˆˆ
xyx ∂
∂

+
∂
∂

+
∂
∂

=∇ . (12) 

 
The Laplacian 2∇  can thus be written in Cartesian coordinates as  
 

                                                 
2 As we shall see below, ∇  can be used in the representation of several operators. It is thus probably best not 
to think of ∇  itself as an operator.   
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We now consider the application of 2∇  to a function ( )zyxf ,, , but we do it "one del 
at a time."  That is, writing ( )zyxf ,,2∇  as ( )[ ]zyxf ,,∇⋅∇ , we first consider the piece 

( )zyxf ,,∇ .  Afterwards we look at ( )[ ]zyxf ,,∇⋅∇ , which we usually simply write as 
( )zyxf ,,∇⋅∇ .   

 
However, before we do this, let's make sure that we understand the concept of a field.  
A field is simply a mathematical quantity that has a value assigned to each point in 
space.  The function ( )zyxf ,,  is known as a scalar field, because ( )zyxf ,,  assigns a 
scalar to each point in space.  A vector field is a function that assigns a vector to each 
point in space.  An electric field is an example of a vector field.   
 
B. The Gradient 
The quantity f∇  is know as the gradient of f .  Let's take a closer look at f∇ .  
Applying Eq. (12) (the Cartesian-coordinate version of ∇ ) to ( )zyxf ,,  produces 
 

 ( ) zyx ˆˆˆ,,
z
f

y
f
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Although not explicitly shown, each term on the rhs is a function of x , y , and z .  
Thus f∇  is a vector field because it assigns a vector to each point in space.  Simply 
put,  the gradient of a scalar field is a vector field.   
 
An important property of ( )rf∇  is that ( )rf∇  is perpendicular to the surface of 
constant f  that contains r  (where r  is any position vector).  Let's use a bit of vector 
calculus to show this.  Consider the picture below.  The surface fS  is the surface of 
constant f  that contains (the end of) 0r .  The vector Sr  is also assumed to lie on this 
surface.  So we wish to show that ( )0rf∇  is perpendicular to fS  at 0r .   
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We now assume that Sr  is close enough to 0r  that we can write the function 
( ) ( )SSSS zyxff ,,=r  as a Taylor series expanded about the point ( )0000 ,, zyx=r , 

 

 ( ) ( ) ( ) ( ) ( ) K+−
∂
∂

+−
∂
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+−
∂
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+= 000000
000

,,,, zz
z
fyy

y
fxx

x
fzyxfzyxf SSSSSS

rrr

 (15) 

 
Now this equation can be expressed in coordinate-independent form as 
 
 ( ) ( ) ( ) ( ) K+−⋅∇+= 000 rrrrr SS fff  (16) 
 
If we now assume that Sr  is close enough to 0r  so that the curvature of the surface is 
negligible, then the higher-order terms can be neglected. Then, because ( ) ( )0rr ff S =  
(both vectors are on the surface fS ), we have 
 
 ( ) ( ) 000 =−⋅∇ rrr Sf . (17) 
 
And because ( )0rr −S  lies in the surface3 we have the result that ( )0rf∇  is perpendicular 
to the surface fS  at the point 0r .  QED.   
 
A concept closely associated with the gradient is the directional derivative.  If we 
have some unit position vector dr̂ , then the directional derivative of ( )rf  in the 
direction of dr̂  is defined as 
 
 ( ) df rr ˆ⋅∇  (18) 
 

                                                 
3 The surface is essentially planar in the vicinity of Sr  and 0r because of the proximity of Sr  to 0r . 

( )0rf∇
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0rr −S
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Physically, the directional derivative tells you how fast the function ( )rf  changes in 
the direction of dr̂ .  What kind of field is this quantity?  Notice that you can also think 
of the directional derivative as the scalar component of ( )rf∇  in the dr̂  direction. 
 
A straightforward application of the gradient is found in classical mechanics.  If 
( )zyxU ,,  is a potential-energy function associated with a particle, then the force on the 

particle associated with that potential energy  is given by ( ) ( )zyxUzyx ,,,, −∇=F , which 
is a vector field (a force field!).   
 
As an example, let's consider the gravitational force on a particle near the Earth's 
surface.  If we define our coordinate system such that z  points upwards and x  and y  
lie in a horizontal plane, then the gravitational potential energy of a particle with mass 
m is given by ( ) ( )0,, zzmgzyxU −= , where 0z  is an arbitrary constant and g 8.9≈  m/s2.  
The force on the particle is then given by ( ) ẑ,, mgzyxU −=∇− .   What are surfaces of 
constant ( )zyxU ,,  in this case?  These are simply horizontal planes (each one at a 
constant value of z ).  Notice that these planes are indeed perpendicular to the force  
field ẑmg− , which points downward at all points in space.   
 
C. Divergence 
Now that we have some feel for the meaning of ( )rf∇ , let's now apply the second del 
to ( )rf∇ , which gives us ( ) ( )rr ff 2∇=∇⋅∇ .  But before we do this, maybe we should 
first say a few words about ⋅∇  operating on any vector field ( )rV .  Writing ( )rV  as 

zyx ˆˆˆ zyx VVV ++  and using the Cartesian-coordinate form of ⋅∇ , we have 
 

 
( ) ( )

x
V

y
V

x
V

VVV
xyx

zyx

zyx

∂
∂

+
∂
∂

+
∂
∂

=

++⋅







∂
∂

+
∂
∂

+
∂
∂
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. (19) 

 
The quantity ( )rV⋅∇  is called the divergence of the vector field ( )rV .  So what kind 
of object is ( )rV⋅∇ ?  Because it assigns a scalar to each point in space it is a scalar 
field.4  Thus we see that the gradient of a scalar field is a vector field, while the 
divergence of a vector field is a scalar field.   
 
If we now let ( )rV  equal ( )rf∇ , we then get [using Eq. (14)] 
 

                                                 
4 We will discuss the divergence in more detail in a later lecture.  Stay tuned! 
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So we see that the Laplacian of f , f2∇ , is the divergence of the gradient of f .  Thus, 

f2∇  is a scalar field.   
 
III.  Some Final Remarks 
Using the generic form of the Laplacian, Eq. (3) can be written in coordinate-
independent form as 
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In the next lecture we will look at some more solutions to Eq. (21) using Eq. (3), the 
Cartesian-coordinate representation, but after that we will look at solutions to Eq. (21) 
using some different coordinate systems – cylindrical and spherical-polar.  The 
representation of Equation (21) in each coordinate system will look vastly different.  
Nonetheless, in each case we will be solving a version of Eq. (21), the 3D wave 
equation.   
 
Exercises 
 
*18.1  Plane Waves.  Consider the solution ( ) ( )tieAtq ω−⋅+ = rk

k r,  to the 3D wave 
equation.  Assume that 0>ω .   
(a)  Calculate ( )tq ,rk

+∇ .  In what direction does ( )tq ,rk
+∇  point?  Thus describe 

constant surfaces of  ( )tq ,rk
+  (for some fixed value of t ). 

(b)  In what direction does ( ) ( )tieAtq ω−⋅+ = rk
k r,  move?  What is the wavelength λ  of this 

wave?  What is the dispersion relation ( )kω  for this wave? 
(c)  Show that the sum of ( ) ( )tieAtq ω−⋅+ = rk

k r,  and ( ) ( )tieBtq ω+⋅− = rk
k r,  is a standing wave if 

AB = .  (Make sure that you write down the specific form of this standing wave.)  
What property of the wave equation allows you to combine solutions to produce 
another solution?   
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*18.2  Divergence and Gradient.  Consider the function ( )
222

321,,
zyx

zyxf ++= .   

(a)  Is it appropriate to calculate the divergence or gradient of this function?  Calculate 
whichever is appropriate. 
(b)  You should now have a new function that you calculated in part (a).  What kind 
of function is it?  Calculate either the gradient or divergence of this new function, 
whichever is appropriate. 
 
*18.3  Divergence.  Using the Cartesian-coordinate form of  the divergence, 

⋅
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, compute the following. 

(a)  ( )
3r

rrE = , where 0222 >++= zyxr .  (Coulomb electric field) 

(b)  ( ) yxrB ˆˆ
2222 yx

x
yx

y
+

+
+

−= , 022 >+ yx . (magnetic field outside a long wire) 

 
*18.4  Let f  and g  be two scalar fields.  Using the Cartesian-coordinate form of del, 
show that ( ) gfgfgf 2∇+∇⋅∇=∇⋅∇ .  What kind of field is ( )gf ∇⋅∇ ? 
 
*18.5  Using (a) Cartesian coordinates, and then (b) spherical-polar coordinates, 
calculate the divergence of  ( ) rrE =  (electric field inside a uniform ball of charge).  
For a field ( )rV that only depends upon the coordinate r , the divergence in spherical-

polar coordinates is given by ( ) ( )rFr
rr

2
2

1
∂
∂

=⋅∇ rF . 

 


