
Lecture 17 
  Phys 3750 

D M Riffe -1- 2/25/2013 

Fourier Transforms and the Wave Equation 
 
Overview and Motivation:  We first discuss a few features of the Fourier transform 
(FT), and then we solve the initial-value problem for the wave equation using the 
Fourier transform.   
 
Key Mathematics:  More Fourier transform theory, especially as applied to solving 
the wave equation. 
 
I.  FT Change of Notation 
In the last lecture we introduced the FT of a function ( )xf  through the two equations 
 

 ( ) ( )∫
∞

∞−

= dkekfxf ikxˆ
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π

, (1a) 
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∞
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−= dxexfkf ikx

π2
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Note that we have changed notation compared to the last lecture.  Hereafter we 
designate the FT of any function by the same symbol, but with an overhead caret 
included.  That is, the FT of ( )xf  we now write as ( )kf̂ .  As we shall see, this is useful 
when dealing with equations that include FTs of several functions. 1 
 
 
II.  Some Properties of the Fourier Transform   
We now discuss several useful properties of the Fourier transform. 
 
A. Translation 
The first property has to do with translation of the function ( )xf .  Let's say we are 
interested in ( )0xxf − , which corresponds to translation of ( )xf  by 0x .  Then, using 
Eq. (1a) we can write 
 

 
( ) ( ) ( )

( )[ ]∫

∫
∞

∞−

−

∞

∞−

−

=

=−

dkeekf

dkekfxxf

ikxikx

xxik

0

0

ˆ
2
1

ˆ
2
1

0

π

π
 (2) 

                                                 
1 This notation is fairly common practice.  At some point you may even see the FT of ( )xf  written as ( )kf .  
At least we won't be doing that here!   
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Thus, we see that the FT of ( )0xxf −  is ( ) 0ˆ ikxekf − .  In other words, translation of ( )xf  
by 0x  corresponds to multiplying the FT ( )kf̂  by 0ikxe− .   
 
 
B. Differentiation 
The second property has to do with the FT of ( )xf ′ , the derivative of ( )xf .  Again, 
using Eq. (1a) we have  
 

 ( ) ( )[ ]∫
∞

∞−

=′ dkekfikxf ikxˆ
2
1
π

. (3) 

 
So we see that FT of ( )xf ′  is ( )kfik ˆ .  That is, differentiation of ( )xf  corresponds to 
multiplying ( )kf̂  by ik .   
 
 
C. Integration 
Let's consider the definite integral of ( )xf , 
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Switching the order of integration on the rhs produces 
 

 
( ) ( )

( ) ( )∫

∫ ∫∫
∞

∞−

∞

∞−

−=












=

12

2

1

2

1

ˆ

2
1

ˆ
2
1

ikxikx

x

x

ikx
x

x

ee
ik
kfdk

edxkfdkxfdx

π

π
. (5) 

 
So if we define ( )xIf  to be the indefinite integral of ( )xf , we can rewrite Eq. (5) as 
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So integration of ( )xf  essentially corresponds to dividing the Fourier transform ( )kf̂  
by ik .2   
 
 
D. Convolution 
The last property concerning the a function and its FT has to do with convolution.  
Because you may not be familiar with convolution, let's first define it.  Simply put, the 
convolution of two functions ( )xf  and ( )xg , which we denote ( )( )xgf * , is defined as 
 

 ( )( ) ( ) ( )∫
∞

∞−

′′′−= xdxgxxfxgf *  (7) 

 
Perhaps the most common place that convolution arises is in spectroscopy, where 
( )xg  is some intrinsic spectrum that is being measured, and ( )xf  is the resolution 

function of the spectrometer that is being used to measure the spectrum.3   The 
convolution ( )( )xgf *  is the spectrum that is then measured.   
 
Note that ( )( )xgf *  is indeed a function of x , and so we can calculate its FT, which 
we denote ( )kgf )*̂( .  Using Eq. (1b) we can write 
 

 ( ) ( ) ( )∫ ∫
∞

∞−

−
∞

∞− 










′′−′= ikxexgxxfxddxkgf

π2
1)*̂( , (8) 

 
which can be rearranged as 
 

 ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

−












′−′′′= ikxexxfxdxgxdkgf

π2
1)*̂( . (9) 

 
Now the quantity in brackets is the FT of ( )xf  translated by x′ .  From Sec. II.B 
above we know that this is ( ) xikekf ′−ˆ  , and so Eq. (9) can be expressed as 
 

                                                 

2 You might think that Eq. (6) could be simplified to ( ) ( )
∫
∞

∞−

= ikxe
ik
kfdkxIf

ˆ

2
1
π

, but this cannot be done 

because indefinite integration produces an undetermined integration constant.  The constant does not appear 
in Eq. (6) because it is an equation for the difference of ( )2xIf  and ( )1xIf .   
3 The resolution function is often quite close to a Gaussian of a particular, fixed width. 
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 ( ) ( ) ( )∫
∞

∞−

′−′′= xikexgxdkfkgf ˆ)*̂( . (10) 

 
Recognizing the integral as ( )kĝ2π  we finally have 
 
 ( ) ( ) ( )kgkfkgf ˆˆ2)*̂( π= . (11) 
 
So we see that the FT of the convolution is the product of the FT's of the individual 
functions (along with a factor of π2 ).  One way you may hear this result expressed 
is that convolution in real space ( x ) corresponds to multiplication in k  space.  
Equation (11) is known as the convolution theorem.   
 
III.  Solution to the Wave Equation Initial Value Problem 
Way back in Lecture 8 we discussed the initial value problem for the wave equation 
 

 ( ) ( )
2

2
2

2

2 ,,
x
txqc

t
txq

∂
∂

=
∂

∂  (12) 

 
on the interval ∞<<∞− x .  For the initial conditions 
 
 ( ) ( )xaxq =0, , (13a) 
 

 ( ) ( )xbx
t
q

=
∂
∂ 0, , (13b) 

 
we found that the solution to Eq. (12) can be written as 
 

 ( ) ( ) ( ) ( )











′′+−++= ∫

+

−

ctx

ctx

xdxb
c

ctxactxatxq 1
2
1, . (14) 

 
With the help of the Fourier transform we are now going to rederive this solution, 
and along the way we will learn something very interesting about the FT of ( )txq , .   
 
We start by defining the (spatial) FT of ( )txq ,  as 
 

 ( ) ( )∫
∞

∞−

−= dxetxqtkq ikx,
2
1,ˆ
π

, (15a) 
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so that we also have 
 

  ( ) ( )∫
∞

∞−

= dketkqtxq ikx,ˆ
2
1,
π

. (15b) 

 
We also define the FT of Eq. (13), the initial conditions, 
 
 ( ) ( )kakq ˆ0,ˆ = , (16a) 
 

 ( ) ( )kbk
t
q ˆ0,
ˆ

=
∂
∂ . (16b) 

 
Now each side of the Eq. (12) is a function of x  and t , so we can calculate the FT of 
both sides of Eq (12), 
 

 ( ) ( )∫∫
∞

∞−

−

∞

∞−

−

∂
∂

=
∂

∂ dxe
x
txqcdxe

t
txq ikxikx

2

2
2

2

2 ,,  (17) 

 
On the lhs of this equation we can pull the time derivative outside the integral.  The 
lhs is then just the second time derivative of ( )tkq ,ˆ .  The rhs can be simplified by 
remembering that the FT of the ( x ) derivative of a function is ik  times the FT of the 
original function.  Thus the FT of ( ) 22 , xtxq ∂∂  is just 2k−  times ( )tkq ,ˆ , the FT of 
( )txq , .  Thus we can rewrite Eq. (17) as 

 

 ( ) ( )tkqck
t
tkq ,ˆ,ˆ 22

2

2

−=
∂

∂  (18) 

 
This equation should look very familiar to you.  What equation is it?  None other than 
the harmonic oscillator equation!  What does this tell us about ( )tkq ,ˆ ?  It tells us that 
( )tkq ,ˆ  (for a fixed value of k ) oscillates harmonically at the frequency kc=ω .  Thus 

we can interpret the function ( )tkq ,ˆ  as the set of normal modes coordinates for this 
problem.  This further means that the FT has decoupled the equations of motion for 
this system [as represented by Eq. (12), the wave equation.]  Notice also that the 
dispersion relation kc=ω  has also fallen into our lap by considering the FT of Eq. 
(12).   
 
As we should know by this point, the solution to Eq. (18) can be written as  
 
 ( ) ( ) ( ) ikctikct ekBekAtkq −+=,ˆ , (19) 
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where ( )kA  and ( )kB  are functions of k .  And as you should suspect, these two 
functions are determined by the initial conditions, as follows.  First, setting 0=t  in Eq. 
(19) and using Eq. (16a) produces 
 
 ( ) ( ) ( )kBkAka +=ˆ , (20a) 
 
and calculating the time derivative of Eq. (19), setting 0=t , and using Eq. (16b) gives 
us 
 

 ( ) ( ) ( )kBkA
ikc
kb

−=
ˆ

 (20b) 

 
We can solve Eqs. (20a) and (20b) for ( )kA  and ( )kB  by taking their sum and 
difference, which yields 
 

 ( ) ( ) ( )








+=
ikc
kbkakA

ˆ
ˆ

2
1 , (21a) 

 

 ( ) ( ) ( )








−=
ikc
kbkakB

ˆ
ˆ

2
1 , (21b) 

 
which gives us the solution for ( )tkq ,ˆ  in terms of the initial conditions 
 

 ( ) ( ) ( ) ( ) ( ) ikctikct e
ikc
kbkae

ikc
kbkatkq −









−+








+=

ˆ
ˆ

2
1ˆ

ˆ
2
1,ˆ  (22) 

 
We are essentially done.  We have now expressed the FT of ( )txq ,  in terms of the 
FT's of the initial conditions for the problem.  The solution ( )txq ,  is just the inverse 
FT of Eq. (22) [see Eq. (15b)], 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) dke
ikc
kbkae

ikc
kbkatxq ctxikctxik∫

∞

∞−

−+
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ˆ
ˆ

ˆ
ˆ
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1

2
1,
π

. (23) 

 
This is the initial-value-problem solution.4  We can make it look exactly like Eq. (14) 
with a little bit more manipulation.  To see this let's first rewrite Eq. (23) as 

                                                 
4 Notice that ( )txq ,  as expressed in Eq. (23) is the sum of two functions, ( )ctxf +  and ( )ctxg − ! 
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 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )( ) dkee
ik
kb

c
ekaekatxq ctxikctxikctxikctxik∫

∞
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−+−+
























−++=
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2
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The first two terms we recognize as ( ) ( ) ( )[ ]ctxactxa −++21 , while we can use Eq. (5) 
to recognize the second half of the rhs of Eq. (24) as ( ) ( )∫

+

−
′′

ctx

ctx
xdxbc21 .  Thus Eq. (24) 

can be re-expressed as 
 

 ( ) ( ) ( ) ( )











′′+−++= ∫

+

−

ctx

ctx

xdxb
c

ctxactxatxq 1
2
1, , (25) 

 
which is identical to Eq. (14).   
 
 
Exercises 
 
*17.1  FT Properties.  If the FT of ( )xf  is ( )kh , 
(a)  show that the FT of ( )[ ]xfe xik0  is ( )0kkh − ; 
(b)  show that the FT of ( )[ ]xfx  is ( )khi ′ ; 
(c)  show that the FT of ( )[ ]xfx2  is ( )kh ′′− . 
 
*17.2  Show that ( )( ) ( )( )xfgxgf ** =  by 
(a)  directly by manipulating Eq. (7), the definition of convolution; 
(b)  by using Eq. (11), the result for the FT of ( )( )xgf * .   
 
*17.3  Convolution and the Gaussian.  The function that has the same form as its 
Fourier transform is the Gaussian.  Specifically if ( ) 22 σxexf −= , its FT is given by 

( ) ( )422

2
σσ kekh −= .  Using this fact, show that the convolution ( )( )xff 21 * of two 

Gaussian functions ( ) 2
1

2

1
σxexf −=  and ( ) 2

2
2

2
σxexf −=  is proportional to the Gaussian 

function ( )2
2

2
1

2 σσ +−xe .  [Hint:  you need not calculate any integrals to do this problem.] 
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**17.4  The Rectangular Pulse. 
Here you will explore the convolution theorem as it applies to a rectangular pulse and 
its convolution, a triangular pulse.  We start with the function ( )xf , a rectangular 
pulse of height H  and width L2  centered at .0=x   Elsewhere the function is zero. 
(a)  Graph ( )xf  
(b)  Calculate Find ( )kf̂ , the FT of ( )xf .  (This is a real function; express it as such.) 
(c)  Graph ( )kf̂ . 
(d)  The function ( )( )xff * , the convolution of ( )xf  with itself, is a triangle function 
of height 22LH  and base L4  centered at zero.  It is zero elsewhere.  Graph this 
function. 
(e)  Write down the mathematical expression for ( )( )xff *  [that you graphed in (d)].  
Then directly calculate ( )( )kff *̂  using your functional form for ( )( )xff * .  (Do not set 
H  and L  to specific values.  Again, this is a real function; express it as such.)   
(f)  Graph your calculated transform ( )( )kff *̂ .   
(g)  Lastly, use ( )kf̂ and the convolution theorem to find ( )( )kff *̂ .  Show that this is 
equal to the result in part (e).   
 
**17.5  FT Solution to the 1D Wave Equation.  Eq. (23), 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) dke
ikc
kbkae

ikc
kbkatxq ctxikctxik∫

∞

∞−
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ˆ
ˆ

ˆ
ˆ

2
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2
1,
π

, (23) 

 
is the formal solution to the initial-value problem. 
(a)  What kind of waves are described by the functions ( )[ ]ctxik +exp  and 

( )[ ]ctxik −exp  ?  Be as specific as possible!   
(b)  From a vector-space point of view, the functions ( )[ ]ctxik +exp  and ( )[ ]ctxik −exp  
can be considered basis functions for the vector space that consists of solutions to the 

wave equation.  Given this, what do the terms ( ) ( )











−
kc
kbika

ˆ
ˆ

2
1  and ( ) ( )












+
kc
kbika

ˆ
ˆ

2
1  

represent? 
(c)  Given your answer in (b), how would you describe the solution ( )txq ,  as written 
above?  [Hint: the term linear combination should appear in your answer.]   

(d)  How are ( )kâ  and ( )kb̂  related to the initial conditions ( )0,xq  and ( )0,x
t
q
∂
∂ ?  That 

is, write down expressions for ( )kâ  and ( )kb̂  in terms of ( )0,xq  and ( )0,x
t
q
∂
∂ .   
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(e)  Assume that the initial conditions ( )0,xq  and ( )0,x
t
q
∂
∂  are real.  Using your answer 

to (d), show that ( ) ( )kaka −= *ˆˆ  and ( ) ( )kbkb −= *ˆˆ .   
 
(f)  Using the results from (e) you can now show that ( )txq ,  is real if the initial 
conditions ( )0,xq  and ( )0,xq&  are both real, as follows.  First, in Eq. (23) replace ( )kâ  
and ( )kb̂  by ( )ka −*ˆ  and ( )kb −*ˆ , respectively.  Then make the change of variable 

kk −→ , dkdk −→  in the integral (taking care with the limits of integration).  Then 
compare Eq. (23) with your new expression for ( )txq ,  and notice how they are related.  
From this comparison you should be able to conclude that ( )txq ,  is real.   
 


