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Introduction to Fourier Transforms 
 
Overview and Motivation:  Fourier transform theory is the extension of Fourier 
series theory to functions that are defined for all values of x .  Thus, we will be able to 
represent a function defined for ∞≤≤∞− x  as a linear combination of harmonic 
functions.   
 
Key Mathematics:  Fourier transforms and more vector-space theory. 
 
I.  Fourier Series vs the Fourier Transform   
By now you should be intimately familiar with the Fourier series representation of a 
function ( )xf  on the interval LxL ≤≤− .  A representation that uses the normalized 
harmonic functions Lxni

L
e π

2
1  (introduced in Lecture 14) is 
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As we know the Fourier series representation is useful for any function that we only 
need to define within the bounds LxL ≤≤− .  Outside that interval, the 
representation is periodic with period L2  because the rhs of Eq. (1a) has a period of 
L2 . 

 
There are many times, however, when we wish to represent a (nonperiodic) function 
on the entire real line as a linear combination of harmonic functions.  To do this we 
can take the ∞→L  limit of Eq. (1).  This limit (which we will not go through, but is 
well defined) yields the following pair of relationships 
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There are several things to notice about Eq. (2).  First, we have traded in the discrete 
index n  in Eq. (1) for the continuous variable ( ) ( )λππ 2== Lnk , which is already 
familiar as the wave vector.  Second, if we compare Eqs. (1) and (2), we might 
conclude that ikxe

π2
1  are now our normalized harmonic functions.  That is correct, as 

we discuss in further detail below.  With that, we can then interpret the function ( )kh  
as the coefficient (or component) of the harmonic function ikxe

π2
1 .  This function 

( )kh  has a special name:  it is known  as the Fourier transform of the function ( )xf .  
The Fourier transform ( )kh  is thus analogous to the Fourier coefficients nc  that 
appear in the Fourier series.  The other feature of Eq. (2) that you undoubtedly 
noticed is that ( )xf  is expressed as a continuous sum (integral) over basis functions 
rather than a discrete sum over basis functions.  This is a necessary consequence of 
the ∞→L  limit.   
 
Because of the resultant symmetry in the two relationships in Eq. (2), the function 
( )xf  is also known as the inverse Fourier transform of ( )kh .  In fact, because ( )xf  

and ( )kh  are obtainable from each other, they each contain the same information, just 
in a different form.1   
 
We remark that there are technical criteria that the function )(xf  must meet for Eq. 
(2) to be valid.  A sufficient condition is that ( )xf  be square integrable, 
 

 ( ) ∞<∫
∞

∞−

dxxf 2 . (3) 

 
If Eq. (3) is true, then ( )kh  is also square integrable and it can be shown that 
 

 ( ) ( )∫∫
∞

∞−

∞

∞−

= dkkhdxxf 22  (4) 

 
The proof of Eq. (4) is left as an exercise.   
 
II.  The Fourier Transform and Vector Space Theory   
As we also discussed in Lecture 14, the Fourier series [Eq. (1)] can be thought of as a 
pair of vector-space relationships 

                                                 
1 Of course, the same is true about the function ( )xf  and the coefficients nc  in the Fourier series.  

Knowing the nc 's is equivalent to knowing the function ( )xf  itself.   
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 ( )fu ,ˆ nnc =  (5b) 
 
where the vector f  is the function ( )xf , Lxni

Ln e π
2
1ˆ =u  is an orthonormal basis vector, 

nc  is the corresponding component of f , and the inner product is defined as 
 

 ( ) ( ) ( )dxxfxg
L

L
∫
−

= *,fg . (6) 

 
Further, because the basis functions are orthonormal, we have the relationship for 
their inner product 
 
 ( ) mnnm δ=uu ˆ,ˆ , (7) 
 
where mnδ , known as the Kronecker delta, equals 1 if nm =  and equals 0  otherwise.  
Eq. (7) is the standard way of expressing the orthonormality of the basis vectors.   
 
We now want to put Fourier-transform theory on the same vector-space footing as 
Fourier series.  This is actually fairly straightforward, except that there is a bit of 
subtlety needed in defining the inner product, as we shall see.  First, if we identify the 
basis vectors as the harmonic functions2 
 
  ( ) ikxexku

π2
1,ˆ = , (8) 

 
then Eq. (2) can be written as  
 

 ( ) ( )∫
∞

∞−

= dkxkukhxf ,ˆ)( , (9a) 

 

 ( ) ( )∫
∞

∞−

= dxxfxkukh )(,ˆ*  (9b) 

 
                                                 
2 To keep the notation as simple as possible, we drop the formal vector notation and just use the functional 
form of the vectors for this space.   
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A comparison of  Eqs. (5) and (9) then suggests that we define the inner product on 
this vector space as 
 

 ( ) ( )( ) ( ) ( )dxxfxgxfxg ∫
∞

∞−

= *,  (10) 

 
Let's see what this gives us if we calculate ( ) ( )( )xkuxku ,ˆ,,ˆ ′  for this vector space.  If life 
is good then we expect to get ( ) ( )( ) kkxkuxku ′=′ δ,ˆ,,ˆ , similar to Eq. (7).  Let's see what 
happens.  Using Eq. (10) we have 
 

 ( ) ( )( ) ( )∫
∞

∞−

′−=′ dxexkuxku xkki

π2
1,ˆ,,ˆ  (11) 

 
We consider two cases separately, kk ′=  and kk ′≠ .   
(i)  If kk ′= , then Eq. (11) integrates to 
 

 ( ) ( )( ) ∞

∞−
= xxkuxku

π2
1,ˆ,,ˆ , (12a) 

 
which is undefined.  Hum… Not too good.  Let's look at the other case. 
(ii)  If kk ′≠ , then Eq. (11) integrates to 
 

 ( ) ( )( ) ( )
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π

 (12b) 

 
Unfortunately, this is not defined either!  So it looks like either the basis functions or 
the inner product is unsuitable.   
 
As it turns out, we can fix this dilemma by defining the inner product slightly 
differently as 
 

 ( ) ( )( ) ( ) ( )dxxfxgexfxg nx
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Notice what the function nxe 2−  does for us.  For any finite n  this Gaussian function 
cuts off the integrand fast enough to make the integral converge.  Furthermore in the 
limit ∞→n  the function itself simply approaches 1.3   
 
Let's see what happens with this definition of the inner product.  We now have 
 

 ( ) ( )( ) ( )∫
∞

∞−

′−−

∞→
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n
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2
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π
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To take advantage of the symmetry of the Gaussian we rewrite this as 
 

 ( ) ( )( ) ( )[ ] ( )[ ]{ }∫
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Because nxe 2−  is even, the integral involving the sine function is zero, so this simplifies 
to 
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−
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We have seen this integral before (see Lecture 12).  Calculating the integral, Eq. (15) 
becomes 
 

 ( ) ( )( ) ( )22lim
2
1,ˆ,,ˆ kknn
n

exkuxku ′−−

∞→
=′ π  (16) 

 
Now you may remember from the last lecture that the limit of a similar sequence of 
Gaussian functions is the Dirac delta function.  If you closely compare Eq. (16) with 
Eq. (8) from the Lecture 15 notes, you will see that Eq. (16) can be expressed as 
 

 ( ) ( )( ) 





 ′−

=′
22

1,ˆ,,ˆ kkxkuxku δ  (17) 

 
And using the relationship ( ) ( )xaax δδ = , this simplifies to 
 

                                                 
3 In fact, nx

n
e 2lim −

∞→
 is one definition of the unit distribution. 
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 ( ) ( )( ) ( )kkxkuxku ′−=′ δ,ˆ,,ˆ  (18) 
 
This, then, is the orthogonality relationship for the basis functions ( ) ikxexku

π2
1,ˆ = .  

Notice that it is similar to Eq. (7) for the Fourier series basis functions, but instead of 
the Krocecker delta, we have the Dirac delta function.  That the orthogonality 
relationship is a distribution rather than a simple function is a result of the variable k  
being continuous rather than discrete.   
 
You will often see written 
 

 ( ) ( )∫
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π
δ

2
1 , (19) 

 
but this is really shorthand for the limiting procedure that we did above.  That is, it is 
really shorthand for 
 

 ( ) ( )∫
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2
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Note that Eq. (20) is a definition of the delta function as the limit of a sequence of 
functions (which is exactly equivalent to our original definition using the sequence of 
Gaussian functions).   
 
Now that we have the inner product suitably defined, let go back to the Fourier 
transform equation and see that ( )kh  is indeed equal to the inner product ( ) ( )( )xfxku ,,ˆ .  
So using Eq. (13) we calculate the inner product of ( )xku ,ˆ  with Eq. (2a)4 
 

 ( ) ( )( ) ( ) dxkdekheexfxku xkiikxnx
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∞
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′′=
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1

2
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If we switch the order of integration in this equation we get something that should 
look familiar, 
 

                                                 
4 Notice that we have renamed the integration variable on the rhs of Eq. (2a) because we have another variable k  in 
this equation.   
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But from Eq. (20) we see that Eq. (22) is simply 
 

 ( ) ( )( ) ( ) ( ) kdkhkkxfxku ′′−′= ∫
∞

∞−

δ,,ˆ , (23) 

 
which gives us the result that we want, 
 
 ( ) ( )( ) ( )khxfxku =,,ˆ . (24) 
 
Thus, as with the nc 's in the Fourier series representation of a function, the Fourier 
transform ( )kh  can be though of as the inner product of the normalized basis 
function with the original function ( )xf .   
 
Exercises 
 

*16.1  Show that Eq. (4), ( ) ( )∫∫
∞

∞−

∞

∞−

= dkkhdxxf 22 , is true. 

 
*16.2  Calculate the Fourier transform of the function ( ) xexf −= .  Plot the resulting 
function vs k .   
 
**16.3  As the notes discuss, the original attempt at defining the inner product as 

( ) ( )( ) ( ) ( )dxxfxgxfxg ∫
∞

∞−

= *,  needs to be slightly modified.  We chose one particular way 

that this can be done.  Another choice that we could have made is 

( ) ( )( ) ( ) ( )dxxfxgxfxg
n

n

n ∫
−

∞→
= *lim, .  Show that this definition of the inner product also 

gives the result ( ) ( )( ) ( )kkxkuxku ′−=′ δ,ˆ,,ˆ  for the inner product of two basis functions.  
{Hint:  you will need to use the second definition of the delta function from Lecture 
15 [Eq. (9) on p. 4]}.   


