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Complex Fourier Series 
 
Overview and Motivation:  We continue with our discussion of Fourier series, 
which is all about representing a function as a linear combination of harmonic 
functions.  The new wrinkle is that we now use complex forms of the harmonic 
functions.   
 
Key Mathematics:  More Fourier Series!  And a cute trick that often comes in handy 
when calculating integrals.   
 
I.  The Complex Fourier Series  
Last time we introduced Fourier Series and discussed writing a function ( )xf  defined 
on the interval LxL ≤≤−  as  
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where the Fourier coefficients are given as 
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While there is nothing wrong with this description of Fourier Series, it is often 
advantageous to use the complex representations of the sine and cosine functions, 
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If we insert these expressions into Eq. (1) we obtain 
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which can be rearranged as 
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This doesn't look any simpler, but notice what happens if we define a new set of 
coefficients (which are simply linear combinations of the of the current coefficients 
na  and nβ ), 
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Then we can write Eq. (5) as 
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or even more simply as 
 

 ( ) ∑
∞

−∞=

=
n

Lxni
necxf π . (8) 

 
Using Eq. (2) it is not hard to show that the coefficients nc  in Eq. (6) are given by 
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Equations (8) and (9) are known as the complex Fourier series representation of the 
function ( )xf .  Notice that with the complex representation there is only one 
expression needed for all of the Fourier coefficients.    
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There is another way to obtain Eq. (9), which is to use the same trick that we have 
used several times before to find coefficients of the harmonic functions:  multiply Eq. 
(8) by the proper function and integrate!  Let's say we want to find the mth coefficient 
mc .  We then multiply Eq. (8) by Lxmie π−  (notice the minus sign in the exponent!) and 

integrate on x  from L−  to L , which produces 
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Now, as before, only one integral on the rhs is nonzero. That is the integral with 

mn = , and its value is L2 .  Eq. (10) thus simplifies to  
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which is equivalent to Eq. (9).  That is pretty much it for the setup of the complex 
Fourier series. 
 
II.  An Example Revisited 
Let's look at an example that we looked at last time, the triangle function 
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which is plotted on the top of the next page.   
 
Let's use Mathcad to evaluate the nc 's.  Inserting Eq. (12) into Eq. (9) 
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and asking Mathcad to evaluate this expression results in 
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Not this is OK, as long as we do not use it for more than it is worth:  for any nonzero 
value of n  Eq. (14) is perfectly fine.  But what about the case of 0=n ?  Then this 
expression is undefined.  What this means is that we must explicitly set 0=n  in Eq. 
(13) and reevaluate it.  But for 0=n , we see from Eq. (9) that 0c  is just the average 
value of the function, which is 2A .  Putting this all together we can represent the 
function ( )xf1  as  
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Now this is a valid representation of the function ( )xf1 , but you may be wondering 
about something.  We know that the function ( )xf1  is real, but the rhs of Eq. (15) 
appears to have an imaginary part, because ( ) ( )L

xn
L
xnLxni ie πππ sincos += .  So what is the 

deal?  Well, it is not too difficult to see that the imaginary part of each positive-n  term 
is exactly cancelled by the imaginary part of the corresponding negative-n  term.  So, 
Eq. (15) is indeed real.   
 
III. The Gaussian Function 
Let's take another look at the Gaussian function and think a bit about representing it 
as a Fourier Series.  You should recall that the Gaussian function is defined as 
 
 ( ) 22 σ

σ
xexG −= , (16) 

 
where σ  is known as the width parameter.  Let's assume in this example that σ>>L .  
Then we have something like the following picture, where we have set 2.0=σ  and 

2=L .   
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Let's calculate the coefficients nc .  Using Eq. (9) we have 
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Now this integral can be expressed in terms of the error function, which is the integral 
of the Gaussian function, but the expression is pretty messy.  However, there is an 
approximate solution to the integral in Eq. (17) that is quite simple and very accurate, 
as we now show.  For the conditions that we assumed, namely σ>>L , the Gaussian 
function is nearly zero for Lx ≥ .  Because of this we can extend the limits of 
integration in Eq. (17) to ∞m , and with very little loss of accuracy we can write 
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We can also take advantage of the properties of integrals of odd and even functions if 
we write ( ) ( )LxniLxne Lxin πππ sincos −=− , which turns Eq. (18) into 
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Now the Gaussian function is even, so the integral of ( )[ ]Lxnie x πσ sin22 −−  is zero, and 
so we are left with  
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It so happens that this integral has a nice analytic solution.  Using the (fairly well-
known) result (which you can find in any table of integrals) 
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we can identify Lnπ  in Eq. (19) as β  in Eq. (20), so we have for the coefficients 
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Now this is pretty cool:  as a function of n , nc  is also a Gaussian, and its width 
parameter is ( )σπL2 .  Notice that this width parameter is inversely proportional to 
the width parameter σ  of the original Gaussian function ( ) 22 σ

σ
xexG −= .1   

 
We can now use Eq. (21) in Eq. (8) and represent a Gaussian function (on the interval 

LxL ≤≤− ) as 
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Let's look at the original Gaussian function ( )xGσ  and its (truncated) Fourier 
representation,  
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So how many terms do we need; that is, how large does M  need to be in Eq. (23)?  
We can get some idea by considering what happens to the coefficients nc  [see Eq. (21)] 
as n  gets larger.  For a Gaussian function, if the argument is several times larger than 
the width parameter, then the Gaussian function is very close to zero.  Thus, we need 
to choose M  such that it is a few times larger than the width parameter ( )σπL2 .  
This is illustrated in the next figure, where we have used 20=M , which is 

                                                 
1 We will see later that this observation is essentially the uncertainty principle of quantum mechanics! 
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approximately 3× ( )σπL2 .  On the scale of this graph, the truncated Fourier series 
certainly does a good job of representing the Gaussian function.  (As above, we have 
again set 2.0=σ  and 2=L ). 
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However, there is an inherent limitation to using Fourier series to represent a 
nonperiodic function such as a Gaussian.  That limitation is illustrated in the next 
figure, which plots the Gaussian and its Fourier series over an interval larger than 

LxL ≤≤− .  Within the interval the match is very good (as we saw in the last graph), 
but outside the interval the match is pretty lousy.  Why?  Well, that is because the 
harmonic functions that make up the Fourier series all repeat on any interval with 
length L2 .  Thus, the Fourier representation of the Gaussian function has periodicity 
L2 .   

 
 
Well, you might say that there is no problem here.  I'll just pick a value of L  that is 
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larger than any value of x  where I might want to evaluate the original function.  That 
might work in practice, but we might also ask the question:  is there a Fourier-series 
representation that will work for all x ?  The answer is yes, and we will discuss that in 
a few lectures after this one.   
 
Right now I just want to point out that getting to such a representation is not at all 
trivial.  Consider the following.  We have represented the Gaussian as a linear 
combination of harmonic functions Lxnie π .  If we want to use a Fourier representation 
for all x , then somehow we must take the limit where ∞→L .  What does that mean 
for the harmonic functions?  It looks like all of the harmonic functions will simply 
become equal to 1 (which seems pretty bad!).  There is a resolution to this dilemma, 
but this illustrates that taking the ∞→L  limit of the Fourier-series representation is 
somewhat nontrivial. 
 
Exercises 
 
*12.1  Calculate the integral on the rhs of Eq. (10) and show that it is nonzero only if 

mn = .   
 
*12.2  Consider the result for the coefficient for the triangle function, 

( )
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π

π
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= , which is undefined for 0=n .  Use l'Hôspital's rule to show that as 

0→n , 2Acn → , the result for 0c .   
 
*12.3  Using Eq. (2) in Eq. (6b), show that nc  is given by Eq. (9).   
 

**12.4  Fourier series example.  Consider the function ( )
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(a)  Plot this function.  Explain why this function is even? 
(b)  Find a real analytic expression for the Fourier coefficients nc  for this function.  
(Hint:  You can use the fact that ( )xf  is even to simplify your determination of the 
coefficients.) 
(c)  Let =L 5.  Plot the function and its truncated Fourier representation for several 
values of M .  What is the minimum reasonable value for M  necessary to represent 
( )xf  on this interval?  


