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Introduction to Fourier Series 
 
Overview and Motivation:  Fourier series is based on the idea that many functions 
of interest can be represented as a linear combination of harmonic functions.  Is this 
cool, or what? 
 
Key Mathematics:  Fourier Series!  And some facts about integrals of odd and even 
functions.   
 
I.  An Observation  
We have already been treading in Fourier-series territory.  You should recall in the last 
lecture that we wrote the general solution ( )txq ,  to the wave equation as a linear 
combination of normal-mode solutions.  Well, these normal mode solutions are 
harmonic (in both space and time).  To write another function as a linear combination 
of harmonic functions is the basic idea of Fourier series. 
 
As a fairly simple example from last time, let's consider Eq. (8) from those lecture 
notes, which can be written as 
 

 ( ) ( ) ( )∑
∞

=

=
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n xaxa π . (1) 

 
This is a profound equation.  It says that we can write the function ( )xa , which is 
fairly arbitrary, as a linear combination of the harmonic functions ( )xL

nπsin .  The price 
we must pay is that we need an infinite number of these functions to describe ( )xa .  
However, as we discussed in the last lecture notes, we often need only a few of these 
functions to accurately describe the function ( )xa . 
 
You should also recall that last time we found an equation for the coefficient ( )naRe  
of each harmonic function.  Without such an equation Eq. (1) might be theoretically 
interesting, but it would not be of much use.  That equation is 
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As we shall see below, equations such as Eqs. (1) and (2) are the essence of Fourier 
Series theory. 
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Our formal discussion of Fourier series will be limited to one independent variable, 
which we call x .  The variable x  does not necessarily represent a spatial position, 
however.  There are many cases when one is interested in using Fourier series to 
represent what is happening in time.   
 
II.  Fourier Series Equations  
The theory of Fourier series starts by considering a function, which we will call ( )xf , 
on the symmetric interval LxL ≤≤− .  If ( )xf  is a "good" function1 then we can 
represent ( )xf  as a linear combination of harmonic functions, 
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The amplitudes nα  and nβ  are known as the Fourier coefficients of the function ( )xf .  
There are a several things to point out here.  The first is that the harmonic functions 
in the series have a period (or wavelength) of nL2 .  Thus each harmonic function has 
the periodicity L2  of the interval.  In fact, the sum in Eq. (3) includes all linearly 
independent harmonic functions with periodicity L2 .  Second, the average value of an 
harmonic function over an interval of periodicity is zero.  Thus, the coefficient 0α  is 
needed to represent functions whose average value is not zero.  Indeed, as we shall 
see, 0α  is the average value of the function ( )xf . 
 
As mentioned above, the representation of a function by a linear combination of 
harmonic functions isn't that useful unless we know how to calculate the coefficients 

0α , nα , and nβ .  Fortunately, expressions for the coefficients are fairly simple and are 
given by 
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1 In typical physicist fashion we will dodge the question of what exactly makes a function "good".  If you are 
interested, there are plenty of text books that discuss this point, including Dr. Torre’s text FWP. 
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Now you may be wondering where these equations came from, but you have seen the 
derivation of formulae equivalent to Eq. (4) several times before.  The last time was in 
the last lecture notes when we obtained Eq. (2) from Eq. (1).  The key is to multiply Eq. 
(3) by one of the harmonic functions and integrate over the proper interval.   
 
As an example, let's derive Eq. (4b).  Starting with Eq. (3), we multiply it by ( )L

xmπcos  
(notice the m ) and integrate from L−  to L , which gives us 
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  (5) 
 
For 1≥m  there is only one nonzero integral on the rhs of this equation,  
 

 ( ) ( ) Ldxxx
L

L
L
m

L
m =∫

−

ππ coscos . (6) 

 
Equation (5) thus greatly simplifies to 
 

 ( ) ( ) Ldxxxf m

L

L
L
m απ =∫

−

cos , (7) 

 
which can be solved for mα , resulting in Eq. (4b) (after replacing m  by n ).   
 
III.  Some Examples 
A.  Triangle Function 
Let's first look at the function, 
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which is plotted in the figure on the top of the next page.   
 
To use the Fourier-series representation of this function we must first calculate the 
Fourier coefficients using Eq. (4).  Before we go ahead and try to calculate the 
integrals, let's notice a few things that will make the calculations simpler.  First, Eq. 
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(4a) tells us that 0α  is simply the average of the function ( )xf  on the interval L−  to 
L .  From the graph we see that this is 2A , so without doing any math we have 
 

 
20
A

=α . (9) 

 
Second, notice that ( )xf  is an even function.  [An even function has the property 

( ) ( )xfxf eveneven =− .]  Now Eq. (4c) is the integral of the product of this even function 
with the odd function ( )xL

nπsin .  [An odd function is defined via ( ) ( )xfxf oddodd −=− .]  
Now the product of an odd function and an even function is an odd function, and the 
integral of an odd function over a symmetric interval about zero (such as L−  to L ) is 
zero.  Thus, again without explicitly calculating the integral in Eq. (4c) we have for 
this example 
 
 0=nβ  (10) 
 
We are left with determining the coefficients nα .  Even here things are simpler than at 
first glance:  we can use a simplifying fact about integrals of even functions over a 
symmetric interval about 0=x .  The simplification is that the integral of an even 
function over a symmetric interval is equal to twice the integral of the function over 
the positive (or negative) portion of the interval.  Now ( )xL

mπcos  is an even function, 
and the product of two even functions is an even function.  With the simplifying fact 
and Eqs. (4b) and (8) we have 
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Using Mathcad, for example, the integral is easily evaluated, resulting in 
 

 ( )[ ]π
π

α n
n
A

n cos12
22 −= . (12) 

 
Using Eqs. (9), (10), and (12) in Eq. (3) produces the Fourier representation of ( )xf1 , 
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As discussed in the last lecture, in practice we use a truncated version of an infinite-
series representation such as that in Eq. (13).  Following that lecture, we write the 
truncated version of Eq. (13) as 
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So where should we cut off the series?  To get some idea, let's graphically look at Eq. 
(14) for several values of M .  As shown in the following figure, the series with =M 9, 
19, and 29 all do a reasonable job of representing the original function, with the major 
difference being the sharpness of the peak at 0=x , which is clearly visible in the rhs 
graph.2  That the function near this point is hard to represent with an harmonic series 
isn't surprising.  Because ( )xf1  has a kink at 0=x , its first derivative is undefined there.  

                                                 
2 Although hard to see in the lhs graph, there is also some rounding of the function at the ends of the interval. 
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Conversely, the harmonic functions that make up the Fourier series are differentiable 
at that point; thus for any finite value of M ,  ( )Mxf1  is also be differentiable at 0=x .   
 
B.  Sawtooth Function 
Let's finish up this introduction to Fourier series with another example.  This time we 
look at the function 
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which is plotted in the next figure.  Notice that the function is discontinuous at 0=x .  
Because the harmonic functions are all continuous, you might expect some difficulty 
in representing this function with a Fourier series.  Indeed, there is a major problem, 
as we shall shortly see.   
 

 
Again we use Eq. (4) to calculate the Fourier coefficients.  As before, the function 
( )xf2  has enough symmetry to make some of the calculations trivial.  We first note 

from the graph that the average value of ( )xf2  is zero, so 00 =α .  Notice also that 
( )xf2  is odd, which means ( ) ( )xxf L

nπcos2  is odd, and so this time 0=nα .  Similarly, 
( ) ( )xxf L

nπsin2  is even, so we can the equation for nβ  simplifies to 
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Again, Mathcad can do the integral, and it gives us 
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So the truncated Fourier representation of the function ( )xf 2  can be written as 
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This function is plotted in the next figure for several values of M .  Notice that using 
even a large number of terms does not do justice to the original function.  The 
problem is due to the discontinuity, as was alluded to above.   
 

 
 
In fact, something quite pathological happens near the discontinuity, as illustrated in 
the next figure, where we zoom in on a section of the above graph.  As the figure 
clearly illustrates, there is an overshoot of the truncated Fourier series, and the size of 
the overshoot does not decrease as the number of terms increases.  This overshoot, 
which is known as the Gibbs phenomenon, happens whenever we try to represent a 
discontinuous function with a (truncated) Fourier series.  Notice that the Gibbs 
phenomenon also occurs for this function at the two ends of the interval.  This is 
because ( ) ( )LfLf −≠ 22 , whereas, the harmonic functions in the Fourier series all have 
the same value at L−  and L .   
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Summarizing, we have seen how to represent a function on a symmetric interval as a 
linear combination of harmonic functions that have the periodicity of that interval.  If 
the function is continuous, the representation works well.  If the function has a 
discontinuity, then the representation it not without its difficulties.   
 
Exercises 
 
*11.1   Obtain Eq. (4a), the expression for 0α , from Eq. (3). 
 
*11.2  An integral involving harmonic functions.  In deriving Eq. (6) from Eq. (5) 

we used the fact that ( ) ( ) 0cossin =∫
−

L

L
L
m

L
n dxxx ππ  for all integers n  and m .  Using the trig 

identities for ( )yx +sin  and ( )yx −sin , do this integral and show that this equation is 
indeed true.   
 
*11.3  Odd and even functions.  Using the basic definitions of even and odd 
function, ( ) ( )xfxf eveneven =−  and ( ) ( )xfxf oddodd −=− , show that the following statements 
are true. 
(a)  The product of two even functions is even. 
(b)  The product of two odd functions is even. 
(c)  The product of an odd function and an even function is odd. 
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*11.4  Integrals of odd and even functions.   

(a)  If ( )xf  is an odd function, show that ( ) 0=∫
−

L

L

dxxf .   

(b)  If ( )xf  is an even function, show that ( ) ( )∫∫ =
−

LL

L

dxxfdxxf
0

2 .   

 
*11.5  Starting with Eq. (11) and using integration by parts (where appropriate) derive 
Eq. 12). 
 
**11.6  A Fourier series example.  Consider the function 
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(a)  Carefully graph this function. 
(b)  Find the Fourier coefficients of this function. 
(c)  Plot ( )xf3  and the truncated Fourier expansions of ( )xf3  for =M 1, 5, and 10. 
(d)  Identify all places where the Gibbs phenomenon occurs. 
 
*11.7  Identify whether the following functions are odd, even, or neither.  3x , 2xe− , 

( )xerf , )cosh(x , ( )xsinh . 


