You may use a pen/pencil and a $3^{\prime \prime} \times 5^{\prime \prime}$, handwritten note card on the exam. Answer all questions as completely as possible; show all of your work. If you run out of space on a problem, continue on the back of that sheet of paper. Good Luck!

Q1. (5 points each) Short and Simple.
(a) Is the function $e^{x}+e^{-x} / 2$ even or odd? Why?
(b) What is the Gibbs phenomenon?
(c) Calculate $\lim _{x \rightarrow 0} \frac{\sin (n x)}{x}$.
(d) Consider the two vectors $\mathbf{a}=\left(\begin{array}{c}1 \\ i \\ 2 \\ -i\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}1 \\ 2 i \\ 2 \\ 1\end{array}\right)$ that live in a four dimensional complex vector space. Calculate the inner product (\mathbf{a}, \mathbf{b}).
(e) Calculate the integral $\int_{-\infty}^{\infty}\left(3+2 x+x^{2}\right) \delta(x-1) d x$.

Q2. (5 points) Starting with $q(x, t)=\frac{1}{2}\left[a(x+c t)+a(x-c t)+\frac{1}{c} \int_{x-c t}^{x+c t} b\left(x^{\prime}\right) d x^{\prime}\right]$, show that $a(x)$ is the initial displacement.

Q3. (10 points) Consider a vector space of functions defined on the interval $0 \leq x \leq L$. Find the norm of the function $f(x)=x^{2}$.

Q4. The function $q(x, t)=A e^{-(x-c t)^{2} / a_{0}^{2}}$ is a solution to the wave equation.
(a) (10 points) Describe in words, as completely and precisely as possible, the nature of this solution.
(b) (10 points) Find the initial conditions $a(x)$ and $b(x)$ that give rise to this solution.

Q5. Consider the 1D wave equation on the interval $0 \leq x \leq L$ with boundary conditions $q(x, t)=q(L, t)=0$. The general solution can be written as $q(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{L} x\right)\left[b_{n} \cos (\omega t)+d_{n} \sin (\omega t)\right]$.
(a) (5 points) What is the relationship between ω and $n \pi / L$?
(b) (15 points) Starting with the equation above, find an expression for d_{n} in term of the initial conditions $a(x)$ and $b(x)$. Carefully show your work.

Q6. the function $f(x)=\left\{\begin{array}{ll}e^{-A x} & x \geq 0 \\ 0 & x<0\end{array}\right.$.
(a) (15 points) Calculate the Fourier transform $h(k)$ of $f(x)$. Express your answer for $h(k)$ in the form $h_{R}(k)+i h_{I}(k)$, where $h_{R}(k)$ and $h_{I}(k)$ are both real functions.
(b) (5 points) Find $\int_{-\infty}^{\infty}|h(k)|^{2} d k$.

