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Background, 2 
 

Ordinary, everyday, Galilean/Newtonian relativity 
 
 An “event” is something that happens at a point in space, at an instant in time.  In 
physics, relativity means the rules by which two observers can compare and make sense 
of measurements each makes of the positions and times of the same events.  In physics, 
an observer is not a person or an individual measuring device.  Such isolated “detectors” are 
plagued by experimental issues of parallax, delay times, and so forth.  For our purposes, an 
observer will always mean an infinite collection of rigidly attached, perfect sensors and 
microprocessors whose internal clocks are perfectly synchronized.  The sensor and 
microprocessor “closest” to an event gets to record that event’s position and time.  The sensors 
and microprocessors that make up each observer are magic: they can pass through one 
another without crashing and breaking.  Thus, two perfect observers can be in motion relative to 
one another and each can record (infinitely rapidly and without error) positions and times of 
events. 
 
 The collection of all possible positions and times is 
spacetime.  Spacetime is the arena in which events occur.  The 
study of relativity is greatly aided by drawing spacetime (s-t) 
diagrams.  Because physical space is (at least) 3-dimensional, s-t 
diagrams suppress one or more directions of space.  A 1+1 s-t 
diagram (1 dimension of space + 1 dimension of time) looks like the 
figure to the right.  A dot on an s-t diagram is an event.  A sequence 
of events whose space and time coordinates change continuously is a worldline.  An s-t diagram 
can be made into a quantitative tool by laying off hash marks along the respective axes 
indicating units of space and units of time.  If that’s done, the  and  coordinates of an event 
can be found by, respectively, drawing a line parallel to the -axis until it hits the -axis (that’s 
the  coordinate) and vice versa for .  Note that the -axis on an s-t diagram is the worldline 
of the spatial origin.  The -axis at any instant, , is the collection of all events that have that 
same time, , that is all events that happen simultaneously at .  (That might sound funny, at 
first, but all points on the -axis get older just like the origin does.)  
 
 Now, we can superpose the s-t diagrams for two observers to 
draw inferences about what each records.  Suppose observer O¢ 
moves with constant speed in the -direction, according to O.  
Suppose the - and -axes are parallel (as are  and , and  
and ) and that the two spatial origins coincide at .  The s-t 
diagram of O also showing the space and time axes of O¢ looks like 
the figure to the right.  The -axis is tipped to the right because it is 
the worldline of the origin of O¢ and that origin is traveling to the right according to O.  (If O¢ 
moves in the -direction the -axis is tipped to the left.)  The - and -axes are parallel 
because in Newtonian physics time is universal: all Newtonian observers reckon that an 
event happens at the same time.  Since the -axis at time  is the set of all events at  and the 

-axis at  is the set of all events at , and , it must be that - and  are parallel.   
 
 Let’s see what the rules are for converting from unprimed space and time coordinates to 
primed coordinates (and vice versa).  It’s convenient to do so with specific examples that will be 
instructive when we consider Einsteinian (special) relativity. 
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Example:  Suppose event A is the emission of a sound pulse from 
 at .  Suppose the pulse travels in the -direction, 

according to O, with a constant speed equal to , where  is the 
constant speed of O¢ relative to O.  Note that worldlines with steeper 
(alternatively, flatter) slopes on an s-t diagram represent slower 
(alternatively, faster) motions.  Suppose the pulse is detected (event B) 
at position  at time .  The s-t diagram to the right shows how to 
determine  and  as well as  by drawing the appropriate 
(dotted) lines.  In order for  the hash marks on the two axes have to be spaced differently.  
The length of each of the two arrows is .  As a result, .  The velocity of the 
pulse according to O¢ is : the two observers disagree about 
where B occurs and about the pulse speed.  But they do agree on how to reconcile their 
differences.  That’s Newtonian relativity for you. 
 
Example: In the previous example, we only considered the  and  
coordinates of B.  Suppose B occurs at  in O and  in 
O¢.  The figure to the right shows the situation.  The figure is not an 
s-t diagram; it shows the three-dimensional spatial coordinate 
systems of O and O¢, as viewed by O, at the instant event B occurs.  
Event A happened at the origin of O  earlier. As above, the arrow 
has length .   The dotted lines determine  and .  
It’s clear that  and .  If the  coordinates are 
included we get .  The velocity of the pulse in the directions 
perpendicular to  are  and the same for .   
 
 Event B doesn’t have to be detection of the sound pulse.  It could be any event with 
coordinates  in O and  in O¢.  As long as the spatial origins coincide at 

 the rules of translation for Newtonian relativity are  

 along with     (1) 

If you want to find  in terms of  just flip the sign of : 

   

and so on.  Incidentally, the s-t diagram for O¢ looks like the 
figure to the right.  Do you see why?  The space and time 
transformations in (1) are historically called Galilean 
transformations. 
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Inertial observers 
 
 If O¢ and O are moving relative to each other with constant speed as above, then 

.  That is, if one observer records an object 
accelerating, the second observer records exactly the same acceleration—provided their 
relative velocity is constant.  If the first observer attributes the object’s acceleration to an 
unbalanced real force (i.e., an acceleration produced by an observed interaction of some kind—
as opposed to the observer itself accelerating: this is Newton’s [First] Law of Inertia), then the 
second observer should attribute the acceleration to the same force.  That is, for a correctly 
formulated Newtonian force, .  Such a force cannot depend on absolute position or 
absolute velocity, because two relatively moving observers disagree on positions and velocities 
along the direction of relative motion.  In this case, both observers are inertial observers and 
switching from one to the other leaves the Newtonian mechanics invariant.  We say, “Newtonian 
mechanics is symmetric under Galilean transformations.”  This is the first of many examples we 
will encounter in which symmetry and dynamics are intimately interconnected. 
 
Example:  Suppose a mass, , is attached to an ideal spring with force constant, , that is 
oriented along the -axis.  According to O the force exerted by the spring on the mass when 
the mass is at position  is .  An observer O¢ moving along the -direction with 
constant speed  records the position of the mass at the same instant to be , 
suggesting that , i.e., not the same force as in O.  But, that’s wrong.  The actual 
spring force is  where  is the position of  relative to , the position of the mass 
when the spring exerts no force.  In the expression above  is apparently O’s origin.  To O¢, 
O’s origin is at .  Inserting this into the force expression we get 

.  The spring force, properly stated, is a correctly formulated 
force. 
 
Example:  A mass, , is injected into a container of liquid in the -direction and thereafter 
experiences a drag force according to O (at rest with respect to the liquid), , where  
is a drag coefficient.  Again, if O¢ moves along the -direction with constant speed , 

, so that it would appear that , not the same as .  This is again 
wrong: the correct drag force is ; the drag force is proportional to the velocity 
relative to the liquid.  Inserting the velocity transformation from (1) above, 

.  The drag force, properly stated, is a correctly formulated 
force. 
 
Example:  The magnetic force on a particle with electric charge, , is given by .  
Suppose  is positive and, to observer O,  is in the -direction at one instant, and  is 
along the -axis.  Then O records an initial acceleration  in the -direction (where 

 is the particle’s mass).  In the next instant the particle will begin to move along the -
direction as well as along the -direction.  Now, suppose, as before, that O¢ moves along the 

-direction with constant speed .  If  (i.e., O¢ catches up with the particle initially) then 
the acceleration according to O¢ is zero initially.  According to O¢ the particle stays on the -
axis.  But that’s impossible: the two accelerations are supposed to be the same.  In the previous 
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examples, this dilemma was resolved by noting that the positions and velocities were relative to 
something, but in the magnetic force law there is no reference to a relative state of motion!  
Thus, it cannot be that  is a correctly formulated Newtonian force.  For awhile in the 
19th century, it was thought that Earth was moving through a kind of liquid, called the ether, 
where electromagnetism was absolutely correct, so that  (which would be a 
good Newtonian force).  But very careful attempts to measure motion relative to the ether have 
failed (with an uncertainty of about 1 part in 1017!), so that can’t be the answer.  To rectify the 
situation requires a little help from Einstein’s special relativity.  We’ll get back to this interesting 
problem presently.  For now, try to digest the essential fact that electromagnetic phenomena are 
not compatible with Newtonian relativity. 
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