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Special relativity, 2 
 
Events not connected by light propagation 
 
 Previously, we considered two events (A, with s-t coordinates 

 according to both O and O¢ [moving relative to O with 
constant velocity  along the mutual -axes], and B, with 
coordinates  and ) connected by a light 
pulse.  In order for both observers to conclude that the speed 
of the pulse was 1, we had to modify the Newtonian reckoning 
of time, namely, that (contrary to Newton) . In 
particular, we found that by modifying the standard Newtonian 
s-t diagram as shown to the right we could argue that 

 and consequently derive the successful 

velocity transformation rule .   

 
 A moment’s reflection shows that there is actually nothing special about B being 
connected to A by a light pulse.  In the s-t diagram to the 
right a signal between A and B travels slower than light.  The 
labels are all essentially the same as in the previous s-t 
diagram.  The similar triangles we used to derive the ratios 
above are still there, just with altered space and time 
coordinate values.  The same velocity transformation rule as 
above can now be applied to signals not traveling at speed = 
1.  You might well wonder how come we didn’t know this rule 
instead of the Newtonian rule .  It’s because for 
the circumstances of Newtonian physics velocities relative to 

 are typically puny. 
 
Example: The Juno Pluto probe is the fastest large object yet produced on Earth.  It left Earth 
traveling at a relative speed of about 74 km/s.  On the other hand, the Cosmic Microwave 
Background (CMB) is moving with a speed of about 370 km/s relative to Earth.  Let's suppose 
observer O¢  is fixed to the CMB and O is fixed to Earth.  If the probe were heading in the same 
direction re the CMB as Earth, then according to Newton we would expect the probe velocity to 
be –296 km/s re the CMB.  (Earth's velocity re the CMB is –370 km/s.)  According to the 
Einstein picture, 𝛽 = 370 𝑐⁄ 	=1.23x10–3 and 𝑢 = 74/𝑐 =2.5x10–4 (c = 300x103 km/s).  According 
to Einstein, what is 𝑢′? Using the velocity transform rule above, we find 𝑢- = –296*(1.0000003) 
km/s.  No wonder we didn’t know how to properly add velocities before we started thinking 
about light. 
 

Incidentally, we can make little things (like electrons) go much faster than the Pluto 
probe.  For a circumstance where a particle traveling with speed = ¾ relative to the laboratory 
emits another particle traveling relative to it, in the “forward” direction, with speed = ¾, the 
speed of the second particle relative to the laboratory is not ¾ + ¾ = 1.5, but rather 
1.5/[1+(3/4)(3/4)] = 0.96.   
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If you examine the second s-t diagram you’ll see that .  Let’s call 

this ratio .  Thus, we can conclude that the rules of transformation between the  and  
coordinates of O and O¢ are 

 
 (as opposed to Newton’s ) 

 and 
 (as opposed to Newton’s ). 

 
Notice, incidentally, the beautifully symmetric way in which the space and time coordinates 
(both measured as length) transform.  This is the origin of the modern notion of “space-time” as 
opposed to Newton’s more awkward “space AND time.”  If all we want to do is compute relative 
velocities along the x-axis we don’t need to know what  is, because  cancels out when 
taking space to time ratios (velocities).  But,  has profound consequences for other kinematic 
and dynamic quantities of interest so evaluating it is essential.  To do this, we make an appeal 
to symmetry: there is no difference between observers O and O¢.  According to O¢, O is traveling 
in the  direction and therefore O¢ should relate the coordinates of events in the two frames 
as  and .  Now, if we replace  and  in the latter equation by the 
expressions above we get , which for arbitrary values of  implies 

.     (1) 

 
Events in other directions: Lorentz transformations 
 
 It’s important to keep in mind 
what events look like in space pictures 
as well as in s-t diagrams.  The figure 
to the right shows the spatial 
coordinate frames of O and O¢ at two 
times: when A occurs and later, when 
B  occurs.  The picture is drawn 
according to O.  A is a flash of light 
from the two overlapping spatial origins at .  Later, the flash is detected at a point on 
the -axis (event B).  The distance the origin of O¢ has traveled between A and B along the -
axis is .  Thus, O records B as taking place at , while O¢ records it at 

.  Using the time transformation rule above, we have . O¢ records 
the speed of signal propagation from A to B to be .  O, on the other 

hand, records the speed of signal propagation to be .  The latter relation can 

be solved for : .  If this expression is inserted into , we 

obtain .  Because , we conclude that .  The same result 

would be obtained if we located B on the -axis.  Thus, we conclude that lengths 
perpendicular to the direction of relative motion don’t change.   
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We are now able to write down the correct and complete set of transformations for 
positions and times according to two observers in constant relative motion (whose origins 
coincide at ):  

     (2) 

 
Note that for two events separated by infinitesimal times and distances  
 

 

 
The latter lead immediately to the velocity transformations: 

     (3) 

 
where , and so forth.  The coordinate transformations are called the 
Lorentz transformations.  Together, the Lorentz [(2)] and velocity [(3)] transformations constitute 
Einstein’s kinematic theory of Special Relativity (“special” because the relatively moving 
observers are both restricted to being inertial). 
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