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Special relativity, 1 
 
Newton and Maxwell 
 
 We have seen that simple  magnetic forces are incompatible with Newtonian 
mechanics.  There are far more profound incompatibilities between electromagnetism and 
Newton.  In particular, Maxwell’s equations predict that an accelerating charge produces a time 
changing magnetic field, which, in turn, produces a time changing electric field, which, in turn, 
produces a time changing magnetic field, which, in turn, produces … .  This self-sustaining 
production of magnetic and electric fields propagates away from the source charge at a finite 
speed given by  (in empty space), the numerical value of which is approximately 3x108 
m/s.  But, according to which observer?  Is there lurking around someplace in Maxwell’s 
formalism an unstated preferred, inertial reference frame (the ether) in which the prediction is 
true (such as one at rest with respect to the “fixed” stars, for example)? 
 

The root of this question is related to how different observers reckon the positions and 
times of the same events in Newtonian physics.  Recall that an “observer” is not a person or a 
single measuring device but rather a collection of perfect sensors and microprocessors with 
perfectly synchronized clocks capable of recording the occurrence of when and what events 
happen close to them.  This way, events are recorded instantaneously at local points. 

 
Suppose two Newtonian observers O and O¢ carry with them spatial coordinate systems 

aligned as in the figure to the 
right. O¢ moves relative to O 
with a constant speed  
along the -direction.  
Event A corresponds to the 
moment ( ) the two 
coordinate origins coincide, 
while event B is some later 
event.  A fundamental 
assumption in Newtonian 
physics is that all observers agree on when events happen: thus .  They don’t agree on 
where, however.  For the coordinate systems shown, , , but .  Letting 

 approach  allows us to measure the velocity of a signal propagating from A to B.  O 
reckons the velocity to have components , , and , while to O¢ the components are , , 
and , with  and , but with .   

 
Back to Maxwell.  Maxwell says that an accelerating charge generates electromagnetic 

radiation that travels at speed  in all directions.  But if two Newtonian observers are moving 
relative to one another, then only one of them can observe speed  in all directions.  The other 
must observe a different speed along the direction of their relative motion.  So, who gets to 
observe ?  What distinguishes one observer from another?  Sound is also a “radiating” wave 
phenomenon (where a speaker, for example, is the “source charge”) and for sound there is a 
clear answer: sound is carried by a medium, such as the air in a room; observers at rest with 
respect to the air measure the “book value” of the speed of sound, while observers moving 
relative to the air measure other values.  When Maxwell published his -result in the 1860s, it 
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was commonly assumed that electromagnetic radiation must also be carried by something—the 
“ether”—and that the preferred observers were those at rest relative to the ether.   

 
 This idea has been tested by several different experiments, first by Michelson and 
Morley in the 1880s, and to much higher accuracy, by Brillet and Hall in 1978.  These 
experiments don’t measure  directly but instead attempt 
to measure differences in  in different directions.  They 
all employ interference, combining two beams of light that, 
if Newtonian physics were exactly correct would have 
different light speeds.  By altering the beams’ directions 
the resulting interference pattern would change, thus 
implying which directions were preferred and which not.  
The Brillet and Hall set-up is depicted in the figure to the 
right.  Laser 1, a beam splitter, two mirrors, a cavity and 
servomechanism are all mounted on a platform that can 
be rotated.  The servomechanism continually adjusts the 
frequency of laser 1 so that the same standing wave mode is maintained in the cavity.  The 
splitter deflects a portion of laser 1’s beam up the axis of rotation where it is joined with a 
second beam from laser 2, which is fixed in the lab (with constant frequency).  The combined 
beam then enters a photon detector.  Then the platform is rotated to different orientations.  If in 
one orientation the beam from laser 1 is in a frame at rest with respect to the ether (due to 
Earth’s motion), it surely won’t be in another orientation (provided Earth is moving relative to the 
ether).  Any change in count rate in the detector as the platform is rotated signals a phase shift 
between beams 1 and 2, which, if correlated to a frequency adjustment in laser 1, would 
indicate that light travels at different speeds in different directions of motion relative to the 
“preferred reference frame.” The Brillet-Hall apparatus is so sensitive that frequency shifts of 1 
part in 1015 are detectable.  (Even more recently sensitivity has been raised to 1 part in 1017.)  
We now know that the Solar system is moving at a speed of about 370 km/s (1.2x10–3 times the 
speed of light) relative to the cosmic background radiation (the modern version of fixed stars) 
and we expect that shifts arising from such motion might be on the order of  = (1.2x10–3)2, 
which is well within detectable limits.  No such shift has ever been found.  If light speed 
depended on direction, this experiment would certainly have found it.  Thus, we can 
confidently conclude that the speed of light is independent of the motion of observers 
relative to the light source and to each other.  This is a profoundly disturbing result, at least 
for Newtonian thinking.  (The null result described above might be explained by Earth “dragging” 
a bit of ether with it.  A similar experiment has now been done with spacecraft across the solar 
system, with again a null result.  So, the idea of ether dragging is highly dubious.) 
 
Newtonian and Einsteinian relativities 
 
 Relativity is the set of rules by which two different observers reconcile their differences 
as to the positions and times of an event each assigns.  As 
mentioned in BK 2, the study of relativity is often greatly 
clarified by using space-time (s-t) diagrams.  As before, 
an s-t diagram is a 2D graph in which one axis (horizontal) 
represents a direction in space and the other (vertical) 
represents time—this is “1+1 spacetime.”  The space and 
time coordinates for two different observers can be 
depicted on the same diagram.  This is shown, for 
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example, in the figure to the right.  Recall that the continuous record of events on an s-t diagram 
for a given object is called the object’s worldline. 
 

Since we are going to be interested in light, and because  is so large, we rescale time 
so that events on the s-t diagram involving light that are a few meters apart won’t all be 
crammed onto the space axes.  Thus, in the figure,  is time measured in meters, that is, 

, where  is ordinary time in seconds.  (Note: one meter of time = 1 m/3x108 m/s = 3.3 
ns.)  A pulse of light covers 1 m of displacement in 1 m of time, so in these units light has speed 
= 1.  When time is measured in meters, speed = distance/time is dimensionless.  Other speeds 
in these units are ratios of speeds in ordinary units divided by :  thus, dimensionless speed is 

.  So, what we see in the figure is a pulse of light emitted at event A and detected at event B 
somewhere on the mutual  axes according to two Newtonian inertial observers, O and O¢. 
More precisely, according to O, A has coordinates  and B has coordinates , 
where the middle two 0s in each case are the  and  coordinates, while according to O¢ the 
coordinates are  and  
 

O¢ moves to the right according to O with a constant (dimensionless) speed .  The 
time axis ( ) of O is the world line of the spatial origin of O; it is a vertical line.  On the other 
hand, according to O the spatial origin of O¢ moves to the right at a constant speed.  So, on this 
s-t diagram the world line of the spatial origin of O¢—the -axis—is tipped over at an angle, , 
where .  To find the position of an event according to O, draw a line from the event 
parallel to the -axis and determine where it intersects the -axis; similarly, drawing a line 
parallel to the -axis and determining where it intersects the -axis finds the time of the event.  
Two such (dotted) lines are shown in the figure emerging from B.  The  and  values of an 
event are found by drawing similar lines, but in this case the line parallel to the -axis is tilted 
(as shown).  We want  and  to be equal for any event (these are Newtonian observers), so 
we have to space the hash marks on the -axis a bit farther apart than on the -axis. 
 

Consequently, the (dimensionless) velocity of the light pulse according to O is 
, while according to O¢ it is .  In other words, if O 

records the speed of the pulse as 1 (i.e., on a world line with slope equal 1 in the figure—like the 
bold one) then O¢ will record it as .  As noted above, these days we can measure such 
differences, even if they might be very small, to very high accuracy and we don’t observe them.  
We have excellent reason to believe that  and  are both equal to 1. 
  
 Of course, as the s-t diagram is drawn above, that 
can’t be.  Something has to change.  The problem is that 

 in Newtonian physics.  Since the distance between 
A and B is less for O¢ than for O, the time between those 
events will have to be shorter as well, so that the speeds 
connecting them are the same.  One way of doing that is to 
redraw the s-t diagram as in the figure to the right.  In this 
figure the -axis is tilted up by the same angle that the -
axis is tilted over.  One triangle (shaded) in the figure has 

 and  on adjacent sides, while a second (shaded) has  and  on the 
corresponding adjacent sides.  The angle between these adjacent sides is  in both cases, so 
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the triangles are similar.  Thus, .  Now, we can write 

.  If , then , also.  This is just the right result! 

 
 Tilting the -axis is something completely new: it is due to Einstein who first proposed 
essentially doing this in 1905.  Einstein’s idea—now known as special relativity—has many 
observable consequences beyond getting the speed of light to be the same for all inertial 
observers, and we turn next to examining some of them. 
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