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Structure of matter, 1 
 

In the hot early universe, prior to the epoch of nucleosynthesis, even the most primitive 
nuclear material—i.e., protons and neutrons—could not have existed.  Earlier than 10–5 s or so 
after , the universe would have been a hot soup consisting of the most elementary of 
particles—photons, electrons, positrons, neutrinos, quarks, and gluons.  We now turn to the,” 
“Standard Model of Particle Physics,” our current understanding of these elementary building 
blocks and their interactions.  The Standard Model of Particle Physics (SMPP), developed in fits 
and starts over the past 50 years, is a quantitatively predictive theory of subatomic matter.  It 
accurately describes the structure of matter at the smallest length scales yet probed, just as the 
Standard Model of Cosmology (SMC)—the FLWR spacetime (including cold, dark matter and 
vacuum energy)—accurately describes the structure of matter at the largest observed length 
scales.  The SMPP and SMC are not only complementary in scale, they are also complementary in 
“force”: the SMC is only about gravity, while the SMPP says nothing about gravity at all. 

 
The building blocks: the elementary particles 

 
The SMPP postulates that all of the matter in the universe (with the possible exception of 

dark matter) consists of combinations of a small number of different kinds of "elementary" particles, 
that is, those that appear to have no internal structure (at least not at the energy scales currently 
available to probe "inside").  These particles are distinguished by their intrinsic angular momentum, 
i.e., their "spin."  Those with half integer spin are "fermions"; those with zero or one unit are 
"bosons."  In its "minimal" form, the SMPP consists of 12 massive fermions, all of which carry a 
property of matter called "weak charge."  Six of these particle "flavors" (the quarks) also carry 
another property called "color charge," while the remaining six "flavors" (the leptons) do not.  In 
each case, the flavors are organized into three "families."  The SMPP also contains 6 bosons.  
Five of these have one unit of spin, while the 6th has zero spin.  The five unit-spin bosons are 
associated with the SMPP’s two fundamental interactions: gluons "mediate" the color interaction; 
and the , and photon mediate the electroweak interaction.  The final, spin-zero, particle is the 
much-discussed Higgs boson.  A tabular representation of the SMPP follows. 

Spin 1/2 fermions 
Quarks 

 Flavor Mass Flavor Mass Flavor Mass 
+2/3  2  1,270  170,000 
–1/3  4.8  100  4,200 

Leptons 
 Flavor Mass Flavor Mass Flavor Mass 

0  <2x10–6  <0.2  <20 
–1 e 0.51  106  1,777 

Spin 1 bosons 
Name Interaction  Mass 
gluon color 0 0 

photon electroweak 0 0 
 electroweak +1 80,400 
 electroweak –1 80,400 

 electroweak 0 91,200 
Spin 0 boson 

Name  Mass 
Higgs 0 125,000 
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In the tables,  is the particle’s electric charge in units of  1.609x10–19 C, and mass in 

units of MeV/c2.  (Thus, the top quark mass is 170 GeV/c2, and so on.)  Though the wide range of 
mass values is weird, the SMPP "periodic tables" appear to be remarkably simple.  All particles, 
except for the massless gluons and photons, carry weak charge.  The color charge of the quarks 
has three values: "red, green, and blue."  Gluons also carry color charge–actually, two kinds: a 
color and an "anti-color."  If one wanted to treat all of the color combinations as different particles, 
there would be 18 different quarks and 8 different gluons.  Moreover, every particle has a twin anti-
particle, so if these are counted separately the number of particles swells to over 60. 
 

The SMPP is formulated in the fundamental framework of quantum field theory (QFT).  
Special relativity is based on a single, well-verified fact: all inertial observers record the same 
speed for light traveling in vacuum.  General relativity is based on special relativity plus a single, 
well-verified fact: inertial and gravitational masses are identical.  Quantum mechanics is similarly 
based on a single, well-verified fact: all quantum entities have simultaneous particle and wave 
properties—the latter being associated with probabilities of particle events occurring.  The 
marriage of quantum mechanics and special relativity begets a formalism called quantum field 
theory.  (Note: to date, quantum mechanics has not yet been married to general relativity.)  A 
quantum field is built from a classical field—which is a smoothly continuous function of position and 
time (i.e., a "wave").  The classical field part of the quantum field is a solution to a "field or wave 
equation."  The difference between a classical and quantum field is that the amplitude of the former 
is just a (possibly complex) set of numbers while the amplitude of the latter is an operator that can 
"create" or "annihilate" particles—thus, interchanging energy and mass.   
 
Nonrelativistic quantum mechanics: the Schrödinger field 
 
 In order to account for wave-particle duality, Schrödinger’s version of nonrelativistic (i.e., 
low energy) quantum mechanics is based on field equation where an operator  
operating on a classical field , "measures" a classical particle’s mechanical energy, 

.  The energy operator is .  The classical kinetic energy is  

and the momentum operator in the -direction is (with similar derivatives for the other 

directions).  Thus, the Schrödinger field equation is 
 

;   (1) 

 
in (1),  is just  times .  Because equation (1) describes electrons in computers and 
lasers it is responsible for a significant fraction of the world’s economy.  In Schrödinger 
quantum mechanics there is a particle, but its position and properties are unknown (and 
unknowable) until a measurement is made.  The solution to the Schrödinger Equation is a classical 
field, a smoothly continuous complex function of position and time.  The quantity  
(where  is the complex conjugate of the complex field ) is interpreted as the probability per 
unit volume (probability density) of finding the particle at position  at time .  Because there is a 
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particle, , i.e., the probability the particle can be detected somewhere is 1.  In 

such problems, there is no need for creation and annihilation: the particle just is.  In relativity, 
where energy and mass are interconvertible, there are situations where it is impossible to state 
how many particles there are.  This ambiguity is even worse for massless particles, such as 
photons.  When particles can come and go a new description is necessary.  That is why quantum 
fields were invented. 
 
Relativistic quantum mechanics: the Dirac field 
 

In special relativity the energy-momentum relation for a massive, free particle is 
 (in conventional units).  Following the successful strategy of nonrelativistic 

quantum mechanics, it is possible to replace  and  by derivatives to make a wave equation.  In 
operator language, the appropriate wave equation should be  (where the 
mass-squared “operator” just consists of multiplying  by mass-squared).  In terms of partial 
derivatives, this equation is 
 

    .   (2) 

 
Equation (2) was actually formulated by Schrödinger (in 1926) before he hit on his now famous 
equation (1).  (For curious historical reasons, (2) is known as the Klein-Gordon (K-G) Equation.  
When  is set to zero, (2) becomes the Maxwell wave equation describing spin-1, massless 
particles traveling at the speed of light—i.e., photons.)   
 

One problem with (2) is there is no potential energy (i.e., no forces).  To rectify this, P.A.M. 
Dirac tried something nutty that—as nutty things sometimes do—turned out to have incredible 
consequences.  First, he set  then boldly proposed a new wave equation, 

, in which the square root is replaced by the 

sum of a momentum dependent part and a rest energy dependent part.  A particle’s momentum in 
3+1 space-time has three components—thus, —and each has its own  

multiplier, i.e., .  
 

Solutions of the "energy" equation should also be solutions of the "energy squared" 
equation.  Thus, for a free particle (with ) it must be that , namely, that 
you get the K-G equation back when you square the Dirac operator.  With this requirement we find 
that (a) , where ,  and  can be ; (b) , for any ; (c)  

, for any ; and (d) .  A moment’s thought shows that the last three equations cannot 
be simultaneously true if the s and  are simple numbers.  But they can be if the s and  are 
matrices.  This means  must also be a matrix, in fact, a column matrix.  In these expressions, 
the bold 0 signifies a matrix with 0 everywhere while the bold 1 signifies a matrix with 1 along the 
diagonal and 0 everywhere else. Because  is a matrix,  is also a matrix. 
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Example:  Suppose .  Then , 

, and so on.  The result (show it) is .  On the other 

hand, .  So, .  Similarly,  

. 

 
 That  is a column matrix means there is a "cost" for going from a field equation with 
second order derivatives, such as the Klein-Gordon equation, to a field equation with only first 
order derivatives (such as Dirac): more fields (the components of the matrix) are required.  Dirac 
found that the smallest matrices that would do the trick he wanted had to have 4 rows and 4 
columns (hence, bigger than the matrices in the example); he also found that  had to be a 
column matrix consisting of 4 rows and 1 column.  The collection of matrices can be expressed as 

, where 0 is a 2x2 matrix of all zeroes and each component of  is also a 2x2 

matrix, and whose square is the 2x2 matrix 1; the matrix  is .  If we let 

, where   and are both 2x1 vectors (i.e., ), the 

Dirac Equation becomes two coupled equations  
 

        (3) 

 
For zero momentum, free particle ( ) states, we see that  has the positive rest energy 

 and  has the negative rest energy ! 
 
Although it is not immediately obvious, it turns out that the "orbital" angular momentum, , 

of a freely translating Dirac mass relative to some point is not conserved; however, the quantity 

 is conserved.  Thus,  acts like angular momentum, but not one associated with orbital 

motion.  Moreover, for a freely translating particle  has two possible values, > 0 when  has a 
component parallel to  and < 0 when it has a component antiparallel to .  (These correspond to 
the two components of each of  and .)  These properties suggest that a free Dirac mass has 
spin 1/2, with its " -component" either along the particle momentum or opposite it—states of right-
handed and left-handed helicity, respectively.  As we will see, the Dirac Equation describes the 
dynamics of all quarks and leptons (see the table above). 
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Now, suppose that the potential energy in equations (3) is due to an electrostatic 
interaction: , where  is the electric charge and  is the electrostatic potential (in volts).  
It is straightforward to convert the negative mass equation in (3) into a positive mass equation by 
just multiplying both sides by –1.  The negative mass equation then becomes 

 (where  gives a positive energy value when ).  
This equation describes a positive energy, positive rest energy particle but with opposite sign 
charge (and opposite helicity from ).  If the original positive energy  describes an electron 
with charge , the second  describes a particle with the same spin magnitude and mass as 
the electron but with charge .  The latter are called positrons; positrons are said to be anti-
electrons.  The Dirac Equation, therefore, automatically has in it not only spin, but also 
antimatter!  Carl Anderson confirmed the existence of the positron in 1932 using a cloud chamber 
to investigate particles produced by high-energy cosmic rays.  Anderson wrote later that he 
vaguely knew of Dirac’s work, but didn’t consciously think that the apparently positively charged 
electrons he was occasionally observing had anything to do with it.  In short, Dirac’s magical 
inspiration to linearize  by using matrices (just a formal mathematical exercise) 
produced the totally unexpected physics of spin-1/2 and antiparticles.  Sometimes, at least, the 
magic works! 
 
Appendix: Wave-particle duality 
 
 An electron "double slit" apparatus—depicted to the right—
provides a prototypical demonstration that quantum entities can exhibit 
both particle and wave properties.  In the apparatus, electrons, with a 
known momentum p, are sent down a tube with grounded walls.  Near 
the bottom of the tube is a positively charged wire and below that a 
charged coupled device (CCD) detector.  Electrons hitting the CCD 
deposit their momentum at a point, just as would be expected for a 
particle.  When the experiment is run one electron at a time, the 
positions of the hits are unpredictable: they appear to be random.  When the positions of many hits 
are superposed, however, a pattern of stripes, where many hits occur separated by regions where 
almost none occur, appears.  The pattern is the same as the interference pattern that is observed 
when light passes through the two slits in an opaque plate.  Measuring the angle (from the wire) 
each stripe of maximum hits makes with respect to the straight-on direction allows one to infer that, 
like light, the electrons have a wavelength (𝜆).  When the electron momentum is varied the pattern 
shifts, but in all cases 𝜆 = ℎ 𝑝⁄ , where ℎ is Planck's constant.  Thus, when an electron hits the plate 
it delivers momentum (and energy) just like a particle, but before hitting the plate it exhibits 
interference just like a wave.  That's wave-particle duality.  Sounds crazy, but it's true. 
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