1. The orbital period of Moon about Earth is about 27.3 d , with a radius $r=3.85 \times 10^{8} \mathrm{~m}$.
(a) Calculate the centripetal acceleration of Moon (the orbit is almost circular).
(b) Compare that with the gravitational field strength of Earth at the center of Moon, given that $M_{\text {earth }}=6 \times 10^{24} \mathrm{~kg}$.
(c) Any comment?
2. Suppose a shaft could be drilled from the North Pole to the South Pole through the center of Earth. Use the expression $g_{\text {inside }}(x)=g_{E} x / R_{E}$ (page 3, GR1) for the gravitational field strength in the shaft at a distance x from the center of Earth. ($g_{E}=$ surface gravitational field strength $=9.8$ $\mathrm{m} / \mathrm{s}^{2}, R_{E}=$ radius $=6.4 \times 10^{6} \mathrm{~m}$)
(a) Calculate the time for the object to go from one pole to the other. (Hint: the motion is simple harmonic: $a=-\omega^{2} x$.)
(b) The orbital period of a satellite in low earth orbit is $T_{L E O}=2 \pi \sqrt{\frac{R_{E}^{3}}{G M_{E}}}$. What is the relationship of the period of the oscillator found in (a) to $T_{L E O}$?
3. A pencil in the International Space Station (ISS) is displaced 1 cm from the center of the Station in the "normal" direction $\left(s_{n}\right)$ as described GR2, p1. It subsequently moves relative to the center according to the oscillator equation $\frac{d^{2} S_{n}}{d t^{2}}=-\frac{G M_{E}}{r^{3}} S_{n}$. The pencil travels 4 cm in one complete oscillation. How far does the ISS travel in the same amount of time? Assume the ISS is in a circular orbit of radius equal to $6.8 \times 10^{6} \mathrm{~m}$. (Hint: the only difference between the LEO period and that of the ISS is the radii of the orbits.)
