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General relativity, 8 
 
The Cosmic Microwave Background (CMB) 
 
 As previously noted, the universe is filled with microwave 
radiation.  The frequency spectrum of this ubiquitous radiation 
follows a blackbody curve, as shown to the right. 
(http://map.gsfc.nasa.gov/media/ContentMedia/990015b.jpg) 
Note that photon energy (proportional to 1/wavelength) increases 
to the right.  You might think the curve shown is the plot of a 
theoretical equation, but what is shown is actual measured data 
taken during the flight of the COBE (Cosmic Microwave Explorer) 
satellite/microwave observatory in 1990.  The uncertainties in the 
measurements are about the thickness of the curve plotted.  When 
compared with a theoretical blackbody curve the disagreement is 
less than one part in 2000.  The CMB isn’t LIKE a blackbody 
spectrum—it IS a blackbody spectrum!  Note that the maximum in the CMB spectrum is at a 
wavelength of about 2 mm.  The energy of a photon of that wavelength is » 6.6x10–4 eV.   
 
 Where does a blackbody spectrum come from?  A blackbody spectrum results from a mish-
mash of processes—primarily atomic and molecular transitions and Doppler shifts.  Though 
transitions between bound states are associated with discrete colors, Doppler shifts and transitions 
involving unbound states can produce a broad blurring of such “lines,” with the end product being an 
energy density-frequency relation,  

,    (1) 

that is characterized by a single parameter—temperature,  (we reserve the symbol  to refer to 
time) measured in kelvins (K)—and is independent of the material from which the radiation emerges.  
The quantity  is Boltzmann’s constant, 8.617x10–5 eV/K.  The temperature parameter fixes both 
the energy density of the radiation and the shape of the frequency distribution.  The maximum in the 
distribution occurs at the photon energy .  As the measured value of  is about 
6.6x10–4 eV,  must be about 2.7 K.  Very careful fitting of (1) to the measured values shown in the 
figure above leads to = 2.725±0.001 K.  If (1) is integrated over all frequencies we get the energy 
per unit volume, , associated with blackbody radiation at temperature : 

.  Dividing (1) by  gives the number of photons 

per unit volume per unit frequency,  

,    (2) 

so the integral of that over all frequency produces the density of photons, : 

.  For  (the energy 
density for luminous matter is about 0.24 GeV/m3, about 1000 times greater) and  » 4.1x108 
photons/m3 (the number density for luminous matter is about 0.26 proton/m3—i.e., about 1.6x109 
photons per proton).  The energy of the most likely photon (where (2) has its maximum) is , 
which is 3.7x10–4 eV at 2.725 K .   
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 In GR7 we noted that ; but, for a blackbody , so it must be that the blackbody 
temperature varies as .  In GR7, we found that the energy density in relativistic particles would 
equal the energy density in matter when (at a time ) the scale of the universe was 1/3200 
(=3.1x10–4) of what it is presently.  At that time the temperature of the CMB would have been about 
8.7x103 K.  The energy of the photons most likely to be encountered in such a blackbody field is 
about 1.2 eV.  Photons only interact with luminous matter and today luminous matter is mostly neutral 
atomic hydrogen (over 90% of the atoms in the universe).  The minimum energy required to excite 
hydrogen from the ground state is 10.2 eV and the minimum energy required to ionize is 13.6 eV.  So 
it might seem like radiation at  is too cool to interact much with matter.  But, as shown above, the 
blackbody spectrum has a long high-energy tail.  Equation (2) can be used to calculate the density of 
photons with energy above 10.2 eV at any temperature, and for = 8.7x103 K the density of such 
photons would be about 105 times greater than the density of atoms.  Indeed, at  all of the atoms in 
the universe must have been ionized.  The mean free path for photons in such an ionized cloud would 
be much smaller than the size of the then “visible” universe.  Photons would be trapped in this hot, 
randomly fluctuating “soup”; such a medium is a perfect environment for creating a blackbody 
spectrum.  Thus, it is likely that the origin of today’s CMB spectrum occurred at a time in the 
development of the universe when radiation was hot enough to ionize hydrogen. 
 

But the CMB photons we detect today do not come directly from the time .  To see why, 
consider the ionization/recombination reaction .  Here,  stands for “neutral 
hydrogen atom,”  for “photon,”  for “proton,” and  for “electron.”  The number   density of 
photons changes in time in two ways: by reaction and by expansion.  Thus, , where 

the last term is due to the increase of the universe’s scale factor ( ).  Today, the last term 
dominates; the number of photons is constant, but the volume they occupy is increasing.  At , 
however, the reaction term overwhelmed expansion, and the reaction must have been in equilibrium.  
The photons observed in the CMB come from a time, , when reaction became less important 
than expansion.  Best estimates suggest that this crossover would have occurred for  about 10–3 of 
the present value, and at a temperature of about 3x103 K.  At that point, the cosmic photons became 
“frozen in” (number fixed) with a spectrum corresponding to a blackbody.   

 
Note that, for such an  ( ) the redshift factor  is 1000.  Recall that the larger is  

the older is the light, and that the largest observed galactic  is about 10.  In other words, the CMB 
spectrum observed today can be used to infer the state of matter in the universe at a much earlier 
time than when galaxies or even stars were present; it is a precious vestigial treasure telling us 
about the ancient days of the cosmos.  (Though not the earliest.  There should be other such 
treasures—such as relic neutrino and gravitational wave backgrounds—but so far our extremely 
limited ability to detect such things means that we are unable to take advantage of their existence.  
Should that situation change in the future we will then have an incredibly more detailed picture of the 
state of the even earlier universe.) 
 
 The CMB spectrum is an exceedingly well-confirmed observational fact; from it important 
inferences about an earlier cosmic epoch can be extracted.  This perspective, however, is the 
reverse of the historical order of things: the blackbody CMB was actually predicted theoretically 
many years before it was first observed.  In 1948, Ralph Alpher, then a youngish post-doc at Johns 
Hopkins, published a theoretical argument that a blackbody CMB should exist at the present time if 
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the universe “started” in an extremely hot state of pure radiation—the so-called “Big Bang.”  In his 
PhD dissertation, presented earlier the same year, Alpher calculated that in a cooling Big Bang 
universe a handful of light nuclear species—predominantly hydrogen and helium—could be 
synthesized in the first few minutes.  His calculated values agreed well with the observed cosmic 
(not stellar) abundances of those elements.  In extending his calculations beyond the epoch of 
cosmic nucleosynthesis, Alpher realized that there would be a time when radiation would not be able 
to interact with matter much and that the state of radiation at that moment would be preserved as a 
kind of “relic” of the “hot, old days.”  He showed that the present temperature of this relic radiation is 
determined by the energy levels in hydrogen and by the present number density of nucleons (i.e., 
luminous matter).  In 1948, the density of luminous matter was not as well-known as it is today, but 
based on the then accepted value, Alpher predicted that the relic blackbody radiation should have a 
temperature of about 5 K.  Though he tried hard to persuade experimentalists to look for this 
radiation, none, at the time, thought that it would be intense enough to measure.   
 

For 17 years, the issue of the CMB lay dormant—forgotten, in fact, by the scientific 
community.  Then, in 1965 Arno Penzias and Robert Wilson, while working on a new satellite 
communication system for Bell Labs in New Jersey, observed that despite heroic efforts to get rid of 
it there was always an irritating hiss in their radio telescope.  Moreover, the hiss did not seem to 
depend on where their receiver was pointing, indicating possibly that it was coming from the receiver 
itself.  They cooled their apparatus and fussed over it—even climbed inside to sweep out pigeon 
droppings that had accumulated in the “horn.”  Nothing helped.  They found that the noise in their 
system had a blackbody spectrum (though with their apparatus they could only measure part of the 
spectrum) with a temperature of about 3 K.  Unwittingly, Penzias and Wilson had stumbled on 
Alpher’s CMB.  Despite the blind serendipity of their discovery, they were justifiably awarded the 
1978 Nobel Prize in Physics.  (It is a historical curiosity that two of the most profound discoveries of 
twentieth century physics were discovered by accident at Bell Labs—the unwitting CMB discovery 
and, 40 years earlier, the totally fortuitous observation by Davisson and Germer that electrons are 
both particles and waves.) 

 
Corroborated now by many high quality space-based measurements (especially those from 

COBE, WMAP [Wilkinson Microwave Anisotropy Probe] (2003), and, most recently, Planck (2009)), 
Alpher’s prediction of the CMB arguably stands as one of the giant contributions to modern science.  
Though over the last 60 years many have tried to produce one, there is no compelling explanation 
for the CMB other than that the universe must have had a hot beginning.  Long ignored, Alpher’s 
seminal work is beginning to gain ever-greater mention in books and historical papers.  
Unfortunately, Alpher died in August 2007 (two weeks after being awarded the National Medal of 
Science) without receiving the much-deserved recognition of a Nobel Prize.  The 2006 Nobel Prize 
was awarded to John Mather and George Smoot, principal investigators on the COBE mission, “for 
their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation.”  
While the COBE results undoubtedly deserved recognition, the Nobel committee could have rectified 
its slight of Alpher by including him this one last time—but chose not to. 
 
 A last point about the observed CMB: COBE, WMAP, and Planck 
show that the CMB is extraordinarily smooth. The false color image to 
the right shows data from Planck recording variations of the CMB 
temperature from the overall average value of 2.725 K; the difference 
between the “warmest” and “coolest” regions of the CMB are on the 
order of 10–4 K.  This is an amazing result because it says vastly separated portions of the universe 
are strongly correlated with one another.  Exactly how this correlation arose is still a matter of 
debate.  A frequently invoked, but still highly debated, explanation is “inflation,” the hypothesis that 
during a very brief period early in the history of the universe the length scale ( , in the FLWR a
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solution of Einstein’s equations) expanded exponentially rapidly, thus wiping out any strong 
variations. 
 
FLWR dynamics 
 
 We have seen that the form of the FLWR proper time contains several important qualitative 
features: (1) the possibility of describing a nonstationary universe whose expansion or contraction is 
encoded in a time-varying cosmic scale factor , which, coupled with Hubble’s galactic redshift 
measurements, appears at this time to be increasing; (2) a simple explanation for the Hubble law 
relating the apparent recessional velocity of galaxies to their distance of separation; and (3) a 
plausible explanation for why the universe is bathed in a more-or-less uniform sea of blackbody 
radiation.  To more convincingly demonstrate the validity of the FLWR s-t picture, we need to know 
more about how  depends quantitatively on what the universe contains. 
 
 To determine  completely requires using Einstein’s full general relativistic field equations.  It 
is sufficient for our purposes to simply note the result: if the energy density in the universe is a 
known function of length scale only,  satisfies the single ordinary differential equation 

.     (3) 

Equation (3) is often referred to as the Friedman Equation.  In (3),  and  (the total mass-energy 
density in the universe) are functions of time.  The right hand side of (3) is the spatial curvature that 
appears in the FLWR proper time.  Usually, of course, one would take the square root and write 

 by itself on one side of the equation, but expressing (3) as shown allows us to make contact 
with Newtonian gravity (sort of).  In particular, suppose we, located at , are inside a uniform 
sphere of mass of radius  (the physical radius of the universe when the FLWR length scale is 

) looking at another galaxy not too far from us (so that its recessional speed is much less than the 
speed of light) at a physical distance , where  is the constant coordinate distance from us.  
Multiply (3) by the constant , where  is the mass of the galaxy we are watching, and switch to 
time  in s instead of  in m.  Equation (3) then becomes  

, 

where  is the mass-energy inside a radius  surrounding us.  The first term on the 
left hand side of this equation is recognizable as the Newtonian kinetic energy of the galaxy; the 
second term looks like the gravitational potential energy, but now due to the interaction of the galaxy 
with all of the mass and energy within a sphere of radius .  The interpretation of the right hand side 
is plausibly the galaxy’s total mechanical energy.  The right side is negative if , corresponding 
to a universe that is closed with positive spatial curvature.  This is analogous to the case for closed 
Newtonian planetary orbits with negative total energy (i.e., with speeds slower than the escape 
speed).  The right side is positive if , similar to open (escape) hyperbolic Newtonian orbits.  
The case, , is analogous to the “just-barely-open, escape-energy” parabolic Newtonian orbits.   
 
 Note that (3) allows for empty universes, i.e., with , that are spatially curved.  Such a 
universe with  would expand or collapse at a constant rate.  As mentioned briefly in GR7, 
when Einstein discovered this (in 1917), he thought that a time-changing universe was physically 
(and philosophically) absurd and as a result introduced the now-famous modification to his field 
equations, a “cosmological constant,” .  Thus, Einstein’s new Friedman Equation is 
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.  A positive cosmological constant makes it possible to have 
an empty universe ( ) with k = –1 that is static ( ), an esthetically more appealing 
situation for Einstein.  Of course, after Hubble demonstrated the possibility that indeed the universe 
was expanding, Einstein famously backed off from the cosmological constant idea (his “worst 
mistake”).  It appears now, however, that this term might be a significant player in the fate of the 
universe after all—though not quite as Einstein had envisioned.  Note, incidentally, that the 
cosmological constant term has the effect of adding to the density of real mass-energy a constant 

energy density: .  This is energy “from nothing”—a kind of “vacuum energy.”  Such an 

effective constant energy density is negative if  > 0.  We’ll come back to the cosmological constant 
later.  
 
 To determine  and  you have to insert a functional form for  into (3), integrate, then 
satisfy some initial conditions.  Unfortunately, that’s not easy because, as stated previously, we can 
only make measurements here and now.  Our knowledge of what the universe is made of and what 
its history has been is incomplete, at best.  Formally, at least, the density  in (3) can be expressed 
as a sum of three parts: , where  is due to all nonrelativistic mass (including dark 
matter),  is due to all relativistic particles (photons and neutrinos), and  is a constant “vacuum” 
contribution, whatever that might be.  (For example, it might be, or least include, .)  There is at 
this moment a critical value of total density that would make the universe spatially flat.  To find that 
value, set  in (3), then solve for  using the current time: , where 

, is the current value (that’s what the subscript “0” means) of the Hubble “constant.”  

Inserting the current best estimate of  we obtain  kg/m3 (see table of most recent values 
in GR9).  If the total mass/radiation/vacuum energy density is greater than this value, the universe is 
likely to have positive spatial curvature and be closed, and its future is likely to see a halt in 
expansion and a re-convergence (a “Big Crunch”).  If the total density is less than, however, the 
universe is likely to have negative spatial curvature, be open, and continue to expand forever.  At 
this moment, relativistic particles account for hardly any of the energy content of the universe.  
Similarly, estimates of the visible matter density indicate that luminous matter only adds up to about 
4.6% of the critical density.  If dark matter is added in, the total matter density rises to .  
Finally, recent measurements of high  objects seem to imply that  is substantial, with a value 
around .  In other words, at this moment, it looks like the total mass/radiation/vacuum 
energy density in the universe just equals the critical density.  This conclusion is corroborated 
by independent Planck satellite measurements of the angular size of the largest CMB fluctuations 
(about 1˚), which is in agreement with the FLWR prediction for such fluctuations with .  If that is 
so, the universe is spatially flat and its expansion will continue forever—but more slowly than if it 
had negative spatial curvature.  
 

Finally, it is interesting to note that each of the three parts of  depends on  differently.  If 

we let the current value of  and then , where 

 are the currently observed values (5x10–5, 0.28, 0.72).  Irrespective of the values of 
the various s (if they are all non-zero), the universe is dominated by radiation when the cosmic 
scale factor is very small and by the vacuum when the scale factor is very large.  Inserting best 
current estimates for the various density contributions into (2) and setting , produces a solution 
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for  that goes to zero a finite time in the past—about 13.8 billion years ago.  At that moment, both 
the density and temperature in the universe would have been infinite.  Of course, this whole scenario 
is based on several assumptions with fairly large uncertainties.  In addition, it is clear that GR cannot 
be trusted at length scales so small.  Surely, quantum mechanics must have played a role—perhaps 
the defining role—at the dawn of creation! 
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