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General relativity, 7 
 
The expanding universe 
 
 The fact that the vast majority of galaxies have a spectral redshift can be interpreted as 
implying that the universe is expanding.  This interpretation stems from the Doppler effect in 
which the relative motion of an emitter and a detector produces a frequency shift of the detected 
light with respect to the emitted light.  The frequency shift formula can be written as a 

wavelength shift formula: .  Now, the galactic spectral shift factor  

can be written in terms of relative speed as .  For , the square root on the 

right hand side can be evaluated using the binomial expansion (what else?), with the result 
being .  In 1931, Hubble published observed redshift data for 20 or so galaxies containing 
visible Cepheid variables, which could be used to determine the galactic distances ( ) from 
Earth.  The -values he measured ranged up to about 0.05 and the corresponding distances 
ranged to about 100 Mly.  Hubble found a remarkably linear relation: , where  was a 
constant.  If the galactic spectral shift can be interpreted as due to motion, then, except for a 
very small number of close-by galaxies that seem to be moving randomly relative to the Milky 
Way, most galaxies seem to be moving away from us—the farther, the faster.  Assuming that 
there is nothing physically unique about the Milky Way, this galactic recession should be 
observable from any galaxy.  Thus, Hubble’s  relation appears to imply the universe is 
expanding more-or-less equally in all directions.   
 
 Since Hubble’s original work, many more galactic redshifts have been measured—using, 
appropriately enough, the Hubble Space Telescope.  In addition, a new kind of standard 
candle—namely, light from “supernovae type Ia”—has greatly expanded our distance measuring 
capability.  At present, the Hubble  rule is well established for  up to about 0.1.  It is 
conventional to write  as , where  is known as the “Hubble constant.”  
The best-measured value of , based on redshifts of about 200 galaxies, is 72±7 km/s/Mpc.  
One Mpc (mega-parsec) = 3.262x106 ly; thus,  corresponds to .  More 
recently, data from the WMAP satellite (more about WMAP later) using a different, indirect 
measurement puts the value of  at 70.0±2.2 km/s/Mpc.  (There are now other slightly 
different values based on still different measurements.) Notice that the dimensions of  are 
LT–1/L = T–1, so is a time. 
 
Example: 1 ly = ( )´(1 y) = 3´105 km-y/s.  1 Mpc = 3.26´106 ´ 3´105 km-y/s = 9.78´1011 km-
y/s.  Thus, = 1 Mpc/70 km/s = 9.78´1011 km-y/s/70 km/s = 14.0´109 y.  As we will see this 
is an extremely important value. 
 
Friedmann-Lemaître-Robertson-Walker (FLRW) universe 
 
 We would like to have a theoretical framework for understanding Hubble’s observations 
as well as the other central facets of modern cosmography, in particular, the cosmic microwave 
background and the observed cosmic hydrogen-helium-deuterium-lithium abundances.  
Because Einstein’s general relativity is so successful at joining relativity and gravity for simple 
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systems of masses, it is natural to ask whether GR can also provide a usefully predictive 
description of gravity at the cosmological level.  The starting point for such a model is the 
assumption that there are, on average, no special places in the universe (on average).  Thus, 
the conventional cosmological model assumes that the universe is spherically symmetric and 
uniform everywhere.  (That approximation is more believable on large length scales where 
clumpiness becomes less obvious.  That might be 10s or 100s of millions of light years.)  The 
goal is to find a solution to Einstein’s equations that is valid inside the uniform mass-energy 
distribution of such a universe.   
 

Alexander Friedmann produced the first solution.  His 1922 paper on the subject 
annoyed Einstein, because the “size” of Friedmann’s universe had to be dynamically 
changing—something Einstein “knew” was wrong.  Remember, this was before Hubble 
discovered other galaxies and their associated red shifts; at that time, common wisdom dictated 
that the universe must be static, always as it now appeared, and infinite in extent.  (Such a 
universe poses a dilemma: every direction in the sky should intersect a star, so the night sky 
should be bright in every direction—which it clearly is not.  This is known historically as Olbers’ 
Paradox.  As we will see, Hubble’s expansion result fixes this problem.)  In fact, Einstein already 
knew that his original 1915 version of general relativity had to describe a dynamically evolving 
universe, and to “stop” it, he proposed a modification that included a “cosmological constant” 
term—a kind of fudge factor that made his equations time-independent.  Einstein wrote a letter 
to the journal in which Friedmann’s paper appeared saying that Friedmann had made a 
mathematical error.  Friedmann was sure that he hadn’t and for two years tried to get Einstein to 
retract his criticism.  Eventually, Einstein recanted, but still maintained that Friedmann’s 
calculation was physically irrelevant.  Friedmann died shortly after, without seeing the 
vindication of his work that would result from Hubble’s. 

 
In 1927, Georges Lemaître, trained as both a physicist and a Catholic priest, reinvented 

Friedmann’s solution, without having read Friedmann’s paper.  He sent a manuscript to Einstein 
detailing his expanding universe, which elicited, in essence, the response: “Yes, I know this.  
Friedmann has already showed it to me.  His physics was wrong and so is yours.”  In a 
subsequent paper, Lemaître went even further.  He proposed that if the universe is now 
expanding, earlier it must have been denser and hotter, and that all of the matter in the universe 
might have originated from the decay of one giant “radioactive atom.”  Of course, once Hubble’s 
findings became known, Einstein had to reconsider his objections.  Famously, he called 
introducing his “cosmological constant” the biggest mistake of his life (as we will see, getting rid 
of it was even bigger!) and warmly and publicly embraced Lemaître’s “primeval atom” idea (“this 
is the most beautiful and satisfactory explanation of creation to which I have ever listened”).  
(Lemaître was inducted into the Pontifical Academy of Science in 1936 by Pope Pius XI for 
proposing a plausible scientific rationale for the creation story in Genesis, though Lemaître 
never claimed such a connection himself.)  
 

Finally, in 1935 Howard Robertson and Arthur Walker proved that the solution of 
Einstein’s gravitational equations by Friedmann and Lemaître is the only one possible inside a 
spherically symmetric, uniform mass distribution.  Curiously, (in America) the solution is now 
often referred to as the “Robertson-Walker metric,” but more properly should be attributed to the 
whole cast of characters.  In the literature, this attribution is usually abbreviated “FLRW.”  
Though not the usual convention, it is more poetic and hopeful to invert the R and W, as we do 
subsequently, giving “FLWR”—the “flower” universe.  In the FLWR universe, proper time is 
given by 
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.  (1) 

Note that in (1) time is the same everywhere, so all clocks are always synchronized.  The 
parameter  is a proper length scale (e.g., the radius of the visible universe) at some reference 
time (such as the present).  The space part of (1), without the -multiplier, marks off coordinate 
distances, physical distances at the reference time.  In this s-t, “free-falling” objects are 
assumed to be at fixed coordinates  and physical distances between them change in 
time according to the scale factor , which is dimensionless.  The parameter  can be 0, 
±1.  If , the spatial part of the corresponding s-t is closed (i.e., is finite in extent) and 
positively curved, much like the surface of a sphere (although here the surface has three 
dimensions).  If , the space part is infinite in extent and negatively curved.  If , the 
space part is infinite in extent and flat.  The FLWR s-t has a constant spatial curvature equal to 

.  In the FLWR s-t, galaxy clusters are like the proverbial raisins in a loaf of raisin bread 
that is rising: as the dough expands it causes the raisins to grow increasingly farther apart.  In 
the FLWR s-t, the expanding dough is space itself; the “raisins,” i.e., the galaxies, are going 
along for the ride.   
 
FLWR kinematics: galactic redshift and energy densities 
 

Note that (1) is a kinematic statement: it harbors certain qualitative consequences for 
how light and matter move about in the universe.  Equation (1) does not tell us, however, 
anything directly about the values of  or , or where they come from.  The situation is a little 
like the statement, “near the surface of Earth all objects fall along parabolic trajectories.”  From 
this information one can derive certain consequences, for example, that the acceleration each 
body experiences is independent of position and time.  You could also predict how things like 
times-of-flight and maximum ranges would depend on initial conditions, and from these you 
could determine  if you had enough trajectory data.  You could not, however, use that 
information to determine Newton’s law of gravity—that is, ’s origin.  In the same sense, to 
determine where  and  come from we need dynamics, namely, Einstein’s equations in which 
correct values of cosmic masses and energies are inserted.  
 

By itself, (1) is useful for describing cosmological kinematics, primarily associated with 
how light propagates through a universe with a varying scale factor.  Matter in the FLWR s-t is 
continuously distributed, like a fluid or a dust cloud.  We can imagine that every point in s-t has 
a bit of that fluid attached to it.  The FLWR s-t deals with enormous distances and times; we can 
therefore interpret these bits of fluid as galaxies—or better, clusters of galaxies.  In the FLWR 
metric all places in the universe are identical, so all can equally serve as the spatial “origin.”  We 
might as well, therefore, take  to be at the Milky Way (we are at the center of the FLWR 
universe).     

 
Suppose a crest of a light wave is emitted from a galaxy at coordinate position  

relative to the Milky Way at time .  The next crest is emitted at .  The first crest is 
detected by us at  at time  (“now”); the second reaches us a little later at time .  
During the time it takes light to travel to us, the scale factor of the universe changes, so the time 
between crests at detection is not the same as at emission: .  As a result, there’s a 
spectral shift due to the change in .  To determine the effect of this, recall that light travels 
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through s-t with zero elapsed proper time.  Set  and the angular terms in (1) equal to zero.  

Then , because the coordinate (not physical) distance 

traveled (the middle integral) is the same for both crests.  The time between crests of light is 
much, much shorter than the time for light to go from one galaxy to another, so the last integral 

can be approximated by .  In other words, , the 

ratio of the period of detected light to that of the emitted light is the same as the ratio of the 
scale factor at detection to the scale factor at emission.  Since wavelength of light is directly 

proportional to period we can write .  More importantly, we can express the galactic 

spectral shift as 

.      (2) 

 
Equation (2) is a direct result of the kinematics of the FLWR s-t.  To evaluate  for any 

particular signal requires knowing the two s.  On the other hand, we know from Hubble’s and 
others’ work that  for all sufficiently distant galaxies is > 0, so it must be that the ratio of the s 
is > 1.  The scale of the universe is apparently greater (at least at this moment in the universe’s 
history) as time goes on.  In other words, the FLWR model s-t tells us that positive  implies 
cosmic length scale expansion.  In this model, the galaxies are all receding, not because they 
were all once together at the same point and a mighty explosion hurled them out into space, but 
because, like the raisins in the rising dough, the distance scale of space is increasing.   

 
Equation (2) leads directly to Hubble’s law , for small values of .  Small  

means that  can be approximated by the first two terms of a Taylor expansion: 

, where .  Inserting this into (2) produces 

.  The quantity  is approximately the distance, , light travels between 

emission and detection (at least for nearby galaxies) and the coefficient  is the 

Hubble constant (divided by ).  It is customary to set .  When that’s done 
Equation (2) can be expressed as 

    .    (3) 

The larger is , the smaller is , and the older must be the light we observe for that source 
now. 
 
 Measured values of , augmenting Cepheid distances with distances inferred from 
supernovae type Ia, show that Hubble’s  holds pretty well for  up to about 0.1, but 
that  increases faster than  for larger values.  A direct interpretation of this phenomenon is 
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that  changed from its current behavior to a different one sometime in the past.  We will see in 
a bit what the contemporary understanding of this shift in  was due to. 
 
 Before turning to how  is linked to gravitational dynamics, it is important to note 
another purely kinematic consequence of the FLWR s-t.  The universe is filled (in the uniform 
“cosmic” sense) with matter/energy in various forms, all of which contribute to the cosmic 
gravity.  Some of the matter/energy is highly relativistic—e.g., photons, for sure, and possibly 
also neutrinos.  Such entities travel at or near the speed of light and their contribution to the total 
gravity is associated with their kinetic energies.  Some forms of matter/energy are non-
relativistic, like atoms and dark matter, for example, and their contribution is fundamentally from 
rest energy.  As the scale factor of the universe changes the relativistic and non-relativistic 
energy densities change also, but differently.  To a very good approximation, the relativistic 
particles carry so little energy now that they don’t interact with non-relativistic matter anymore.  
In that event, the number of photons, neutrinos, electrons, and nucleons are all fixed.  The 
energy density in non-relativistic matter is approximately just the rest energy of matter per unit 
volume.  Volume is proportional to the scale factor, , raised to the three-power.  Thus, we can 

write the energy density of non-relativistic matter as , where the subscript 

“0” means, “value measured at the present time.”  The rest energy (if any) of a highly relativistic 
particle is negligible and its total energy can be expressed in terms of its de Broglie wavelength 
as .  As  changes, the wavelength changes also.  This leads to a different energy density 

dependence, namely, .  Though today the density of non-relativistic 

matter/energy is estimated to be about 5500 times larger than that of relativistic matter/energy, 
at some point in the past the two must have been equal.  That would have occurred at an -
value of , provided the number of photons then is the same as today.  In 
fact, the number of photons changed before this -value and there’s good evidence that  is 
actually more like 1/3200.  For times earlier than when  the universe must have 
been dominated by relativistic particles – photons, neutrinos, and other particles whose kinetic 
energies were much greater than their rest energies.  That early epoch of the universe is called 
“radiation dominated.”  
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